• Название: <4D6963726F736F667420576F7264202D20F2E5EEF0E8FF20ECEDEEE6E5F1F2E2203236E8FEEDFF20D1C220CFC8D1C0D0>

.

.

071900 «

!

1

#

»

"

!

#

- 2006
-

$

&

#

'

# #

!

#:
#

-

"

#,

#

!

% .

,

#(

». )
"

*

«

#

»

#

.

#

2004-2005

.

+
+

: .!- . ,

,

$

: -.&. . "

 +.&. + #



, +. . '

&
#

+ #

;

'

!

«
,

#

: .!- . ,

"

!

#

#,

&

%

&

)

2
§ 1.
+'$& - ,/0 + 010, 2
1.1
,

,

B, C, N, R,... 3
"x ∈ M"

;
0

!

A,

a, p, e, x, t .... 4

"∈ "

#

# "5

,

x

".

"
"x ∉ M",

# "5

x

".
N, Z, Q, R

6

,

"

,

,

,

#

#

, 7

#,

;

5

,

, - #};

# {100, 101, 110, 111}

"

"

. .
!

P(x),

"
M = {x| P(x)}
,

,

( "

"

2.
):

"

! {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

{) #,

:

#

1.
"

",

.

"

'

",

#
(

5

M = { x: P(x)}.

,

0

(

: E = {x| f(x)=0};

f(x) = x 3 + 2x 2 - 3x + 4

# f(x)=0,

[0,1]

&

: & = {x: 0 ≤ x ≤ 1}.
3.

#

5

..
,

,

#

Z = {.. -3, -2, -1, 0, 1, 2, 3, ...},

"

2: {..... 2 −3 , 2 −2 , 2 −1 , 0, 2, 2 2 , 2 3 , .....}.
4. $

,
(

*

'
Ø

"

).

,

#

# (

(

.-

"5

#

.

#
&

,

#

#

"

"

.

5
0

5

&# #

&

(

#
&(

*
.

⊃ &).

5 "

,

#5
*

&⊂ )
#"

,
# ,

# ,
,
&# #

#

3
,

-

#

&: & ⊂ &. '

,

# #

1 #

&
. 0
&,

5

#

& ≠ Ø, & ⊂

(

5

"

.
# «

" ∃ x ∈ M"

»;

";

"

,

"8

#

" ∃, ∀ "

4

: Ø ⊂ &.

#

&

&

,

#

" ∀ x ∈ M"

"

#

# " (

#

5

"

".
1.2 S={s},

'

,

As.

{As}, 5

# #

s∈S,

s
As,

#

.
& α (9 ∈ )

#

& α = { x| ∃ α ∈ B , " ∈ & α }.
α ∈B

,

-

&: &UØ = &.

#

& α (9 ∈ )

#

& α = { x| ∀ α ∈ B , " ∈ & α }.
α ∈B

0

+
+

D

D

(
,

'

+:D=Ø.

,

5

#.

Ø:Ø=Ø .
&

(&\ )
.2

&,
1

,

,

( " 5

,

,
,

#(

"5

&\&=Ø.

& –

, B –

"

,

A:B, A ∪ B, &\ .

$ .1 – -

⊂ &,

0

,
),

&\

.

#

&(

#
&

#

.

4

$ .2 – 1
1.3 3
# ,

%

A

B
A

5

,
B,

5

B

5

A

5
B

5

#

A.

5
,

,
.
A

0

B5

A∼ B1 , B1⊂ B,

0

,
B

5

,

A~B.

*

# ,

&,

A

B.

A

,

#

n∈ N,

(

A~ {1, 2, 3, …, n}.
# ,

5

A

A

n.

(
(

.

#
,

# # (

A

,

#
#

#

.

A~N.

,
,

#

(

,

,

A~R.

*

,

N.

(
.

.

)

1.

"

2.

"
A

'$

.

"

.

"
#

0$/ + $0;0, 2
1. 1

'
+
5

n5

A, B, C.

(

<

,

#

; 2) " #

( ":1)
5

#

.

,

#(
; 3)

5
. 1) (A : B) :C;

$ *

2. ,

'

2) (A ∪ B) ∪ C;

3) (A : B) ∪ (C : B) ∪ (A : C).

&∪ , &\ , \&, &∩ ,

&={-4; -3; -2; -1; 0; 1}, ={-1; 0; 1; 2; 3}.

. &∪ ={-4; -3; -2; -1; 0; 1; 2; 3}; &∩ ={-1; 0; 1}; &\ ={-4; -3; -2}; \& ={2; 3}.

$ *

4&1&
1. 1

4

,

,

#

#

&= .
2. 1

4

⊂&

# &⊂

,

,

: 1) & ∪

=

; 2) & :

= &;

A ⊂ B.
3. 1

4

,

(&\ ):( \&)=Ø.

4. 1

4

,

"

.
4

5. 1

,

4

6. 1

,

4

7. 1

,

⊂ D,

&⊂

∈ &,
,

A ⊂ D.
{ } ⊂ &.

5
A\ (

\ +) = (A \ B) ∪ +

& ⊃ +.
4

8. 1

A\ (A \ B) = A ∩ B.

4

9. 1

4

10. 1

,

A:(BUC)=(A:B)U(A:C).

4

11. 1

,

A:(BUA)=A.

4

12. 1

,

AUA=A.

4

13. 1

,

A:A=A.

4

14. 1

,

(A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).

4

15. 1

,

(A \ B) \ C= A \ (B ∪ C).

4

16. 1

,

(A \ B) ∩ C = (A ∩ C) \ (B ∩ C).

4

17. 1

,

A ∪ (B \ C) ⊃ (A ∪ B) \ C.

4

18. 1

,

(A ∪ C) \ B ⊂ (A \ B) ∪ C.

4

19. 1

,

&U(BUC)=(AUB)UC.

,

X\(
α ∈!

4

20. 1

,

X\(
α ∈!

A α )=

α ∈!

A α )=

(X\A α ).

α ∈!

(X\ A α ).

4

21. ,

&∪ ,&\ ,

\ &, & ∩ ,

&={-1;0;1;2;3;4;5}, ={2;3;4;5}.

4

22. ,

&∪ ,&\ ,

\ &, & ∩ ,

&={-1;0;1;2;3}, ={-2;-1;0;1}.

6
§ 2.
+'$& - ,/0 + 010, 2
2.1 +

.

"

#.

" #
1 #

"

b

"

,

a+b. +

"
1. 1 #

" a

"

(

:
b: a+b=b+a. 3

)

#.

2. 1 #

" a,b,c: a+(b+c)=(a+b)+c. 3

(

)

#

#.

3. + (

0,

4. 1 #

,

,

,

,



+(- )=0.

+(-b)

" #

: +0= .

#
,

(
,

1

#

-b.

#.

1 #

"

b

"

,

·b. '

"
5. 1 #

b:

"

(

)

1,

,

8. 1 #

=0

1/ ,
C #

,

#

#.
, b, c: (a+b)·c = a·c + b·c. 3

"
(

)

#

#

#

#.

.
"

b), a>b (

"

a

* b)

,

b

*
#

10. 0

>b,

#

: + >b+ .

11. 0

>b,

#

>0: ·c>b·c.

%

: ·1= .

#

,

(

#

9. 1 #

,

·(1/ )=1.

"

1 #

#

#.

7. + (

(a

#

a,b,c: a·(b·c)= (a·b)·c. 3

"
)

$

·b=b· . 3
#.

6. 1 #
(

:

.

#

:

<b (

* b), =b

7
12. )

& ⊂R,

8&, b8B

5

#

#

>b,

⊂R,

"

(

#

"

z0,

#

" "8&, 8 : ">z 0 > .
2.2
,

-

,

#

[a, b] = {x : a > x > b},
(a, b) = {x : a < x < b},
[a, b) = {x : a > x < b}, (a, b] = {x : a < x > b}.
:

6

(a, + ∞) = {x : x > a}, (- ∞, a) = {x : x < a}, (- ∞, + ∞) = {x : x ∈ R}.
(a - ε, a + ε),

ε > 0,

2.3 .

ε-

a

Uε (a).

"
X

∈R

(

(X ⊂ R)

"
,

X

5

∃ ∈ R: ∀x ∈ X
X ⊂ R
,

"

,

X

#

, . .

x > .

#

5

" ,

#

(

d ∈ R

* d, . .

∃ d ∈ R : ∀x ∈ X x ≥ d.
X⊂R

,

#

" ,

, . .

∃c∈R

∃ d ∈ R:

∀x ∈ X

c > x > d.

'

∃ g ∈ R : ∀x ∈ X | x | > g.
0

" ,

?

" ,

,

*

(supremum).

"
a # #
(

#

(

&

'

?,

#

#

#

#

#:

1) ∀ x ∈ X

x > a;

2) ∀ @ >0 ∃ x0 ∈ X: x0 > a - @.
.

#

" ##

0

# sup X.

?
?

,

,

!
b # #
(

#:

#

,

*

'

(

(infimum).
?,

8
1) ∀ x ∈ X

x ≥ b;

2) ∀ @ >0 ∃ x ∈ X: x < b + @.
.

#

##

# inf X.

?
" (

#
(

"

)

)

"

.

0

" (

),

)

"

*

sup X = + ∞ (

inf X = - ∞).
2.4 &

#

(
(

&
-",

"<0. &

#

#

"

x≥0,

",
|"|. ,

#

,

|+5|=5; |-5|=-(-5)=5; |0|= 0.
1) |x|≥0;

2) |x|=|-x|;

3)-|x|>x >|x|;

4) ,

|x >ε (ε>0)

5) ,

|x|≥α (α >0)

6) | x±y|>|x|+|y|;
9) |

:

"

,

-ε>x>ε;
,

7) |x±y|≥ |x|-|y|;

"≥α,

">-α;

8) |x⋅y| = |x|⋅|y|;

x |x|
|=
(y ≠ 0).
y | y|

'$

0$/ + $0;0, 2
1. 1

'

,

# #

X={ 1 ,

#

1 1
1
, , …, , }
2 3
n

. ,

#

.

,

"

5

.
. '

$ *

n

X

1# #

#

"

,

1 # 5

,

"

1/n

(

1
0< >1,
n

#

5

.
,

1

#

,
,

-

#

,

#

sup X =1.

#

ε>0

,

1
> 1 - ε.
n

#

1>1-ε , 5
,

1

X, . .

— sup X =1.
0# #
ε>0

(

X. 1 # 5

#

1
n

,

#

#

9
1
< 0 + ε.
n
,

1

,

,

1

ε

,

X
,

.

-

#

#

1

#

0

##

# #

,

#

5

.

*

2. ,

'

*

. 1) '

$ *

.'
2) '

"<0

: 1) |x|=" + 2; 2) |x|="-2; 3) "+2|x =3.

#

"≥0

"="+2,

"≥ 0

"="-2,

*

"≥0

"+2"=3,

, "1=1

+

"2=-3 —

$ *

. .

$ *
"≥5,

"<0

"≥0. +

#

" ",

1
"< .
2
|x–3 |≥2.

.

5

x–3≥2

x>1.

4&1&

sup X

inf X ,

n
(−1) n
1) X={xn: xn =
}; 2) X={xn: xn =1 +
};
n
n +1
3) X={xn: xn =

"2=-3.

,

"<0,

5. $ *

1. ,

"–2"=3,

|2"-1|>2x-1.
|x|>x

" 2"–1< 0,
'

.

"≥5.

4. $ *

'

*

#.

#

, |x|="
"-5≥0,

#

,

|"-5| ="-5.

. '

$ *

#.

*

;

"1=1. '

*

3. $ *

'

,

"=1>0,

,
3) '

"=-1 —

;

0=-2 —

-"="-2,

"<0. .

0=2 —

-" ="+2,

"<0

4

ε

inf X = 0.

*

*

1

n >