pandas

Формат документа: pdf
Размер документа: 0.18 Мб




Прямая ссылка будет доступна
примерно через: 45 сек.



  • Сообщить о нарушении / Abuse
    Все документы на сайте взяты из открытых источников, которые размещаются пользователями. Приносим свои глубочайшие извинения, если Ваш документ был опубликован без Вашего на то согласия.

F M A
Data Wrangling with pandas Cheat Sheet h.p://pandas.pydata.org Syntax – Crea7ng DataFrames Tidy Data – A founda7on for wrangling in pandas
In a 7dy data set: F M A Each variable is saved in its own column
&
Each observa8on is saved in its own row Tidy data complements pandas’s vectorized opera8ons . pandas will automa7cally preserve observa7ons as you manipulate variables. No other format works as intui7vely with pandas.
Reshaping Data – Change the layout of a data set
M A F
*
M A
*
pd.melt (df ) Gather columns into rows. df.pivot (columns=' var ', values=' val ') Spread rows into columns. pd.concat ([df1,df2]) Append rows of DataFrames pd.concat ([df1,df2], axis=1) Append columns of DataFrames df.sort_values ('mpg') Order rows by values of a column (low to high). df.sort_values (' mpg',ascending =False) Order rows by values of a column (high to low). df.rename (columns = {' y':'year '}) Rename the columns of a DataFrame df.sort_index () Sort the index of a DataFrame df.reset_index () Reset index of DataFrame to row numbers, moving index to columns. df.drop ([' Length','Height '], axis=1) Drop columns from DataFrame
Subset Observa8ons (Rows) Subset Variables (Columns)
a b c 1 4 7 10 2 5 8 11 3 6 9 12 df = pd.DataFrame ( {"a" : [4 ,5, 6], "b" : [7, 8, 9], "c" : [10, 11, 12]}, index = [1, 2, 3]) Specify values for each column. df = pd.DataFrame ( [[4, 7, 10], [5, 8, 11], [6, 9, 12]], index=[1, 2, 3], columns=['a', 'b', 'c']) Specify values for each row. a b c n v d 1 4 7 10 2 5 8 11 e 2 6 9 12
df = pd.DataFrame ( {"a" : [4 ,5, 6], "b" : [7, 8, 9], "c" : [10, 11, 12]}, index = pd.MultiIndex.from_tuples ( [('d',1),('d',2),('e',2)], names=[' n','v ']))) Create DataFrame with a Mul7Index
Method Chaining
Most pandas methods return a DataFrame so that another pandas method can be applied to the result. This improves readability of code. df = ( pd.melt (df ) .rename(columns={ 'variable' : ' var ', 'value' : ' val '}) .query(' val >= 200') ) df [df.Length > 7] Extract rows that meet logical criteria. df.drop_duplicates () Remove duplicate rows (only considers columns). df.head (n) Select first n rows. df.tail (n) Select last n rows. Logic in Python (and pandas) < Less than != Not equal to > Greater than df.column.isin (values ) Group membership == Equals pd.isnull (obj ) Is NaN <= Less than or equals pd.notnull( obj ) Is not NaN >= Greater than or equals &,|,~,^, df.any (), df.all () Logical and, or, not, xor , any, all h.p://pandas.pydata.org/ This cheat sheet inspired by Rstudio Data Wrangling Cheatsheet (h.ps://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf ) Wri.en by Irv Lus7g, Princeton Consultants df [[' width','length','species ']] Select mul7ple columns with specific names. df ['width'] or df.width Select single column with specific name. df.filter (regex=' regex ') Select columns whose name matches regular expression regex . df.loc [:,'x2':'x4'] Select all columns between x2 and x4 (inclusive). df.iloc [:,[1,2,5]] Select columns in posi7ons 1, 2 and 5 (first column is 0). df.loc [df ['a'] > 10, [' a','c ']] Select rows mee7ng logical condi7on, and only the specific columns . regex (Regular Expressions) Examples '\.' Matches strings containing a period '.' 'Length$' Matches strings ending with word 'Length' '^Sepal' Matches strings beginning with the word 'Sepal' '^x[1-5]$' Matches strings beginning with 'x' and ending with 1,2,3,4,5 ''^(?!Species$).*' Matches strings except the string 'Species' df.sample (frac =0.5) Randomly select frac7on of rows. df.sample (n=10) Randomly select n rows. df.iloc [10:20] Select rows by posi7on. df.nlargest (n, 'value') Select and order top n entries. df.nsmallest (n, 'value') Select and order bo.om n entries.

Summarize Data Make New Columns Combine Data Sets
df ['w']. value_counts () Count number of rows with each unique value of variable len (df ) # of rows in DataFrame . df ['w']. nunique () # of dis7nct values in a column. df.describe () Basic descrip7ve sta7s7cs for each column (or GroupBy ) pandas provides a large set of summary func8ons that operate on different kinds of pandas objects ( DataFrame columns, Series, GroupBy , Expanding and Rolling (see below)) and produce single values for each of the groups. When applied to a DataFrame , the result is returned as a pandas Series for each column. Examples: sum() Sum values of each object. count() Count non-NA/null values of each object. median() Median value of each object. quantile([0.25,0.75]) Quan7les of each object. apply( function ) Apply func7on to each object. min() Minimum value in each object. max() Maximum value in each object. mean() Mean value of each object. var () Variance of each object. std () Standard devia7on of each object. df.assign (Area=lambda df : df.Length *df.Height ) Compute and append one or more new columns. df ['Volume'] = df.Length *df.Height *df.Depth Add single column. pd.qcut (df.col , n, labels=False) Bin column into n buckets. Vector func8on Vector func8on pandas provides a large set of vector func8ons that operate on all columns of a DataFrame or a single selected column (a pandas Series). These func7ons produce vectors of values for each of the columns, or a single Series for the individual Series. Examples: shift(1) Copy with values shihed by 1. rank(method='dense') Ranks with no gaps. rank(method='min') Ranks. Ties get min rank. rank( pct =True) Ranks rescaled to interval [0, 1]. rank(method='first') Ranks. Ties go to first value. shift(-1) Copy with values lagged by 1. cumsum () Cumula7ve sum. cummax () Cumula7ve max. cummin () Cumula7ve min. cumprod () Cumula7ve product. x1 x2 A 1 B 2 C 3 x1 x3 A T B F D T adf bdf Standard Joins x1 x2 x3 A 1 T B 2 F C 3 NaN x1 x2 x3 A 1.0 T B 2.0 F D NaN T x1 x2 x3 A 1 T B 2 F x1 x2 x3 A 1 T B 2 F C 3 NaN D NaN T pd.merge (adf , bdf , how='left', on='x1') Join matching rows from bdf to adf . pd.merge (adf , bdf , hoight', on='x1') Join matching rows from adf to bdf . pd.merge (adf , bdf , how='inner', on='x1') Join data. Retain only rows in both sets. pd.merge (adf , bdf , how='outer', on='x1') Join data. Retain all values, all rows. Filtering Joins x1 x2 A 1 B 2 x1 x2 C 3 adf [adf.x1.isin(bdf.x1)] All rows in adf that have a match in bdf . adf [~adf.x1.isin(bdf.x1)] All rows in adf that do not have a match in bdf . x1 x2 A 1 B 2 C 3 x1 x2 B 2 C 3 D 4 ydf zdf Set-like Opera7ons x1 x2 B 2 C 3 x1 x2 A 1 B 2 C 3 D 4 x1 x2 A 1 pd.merge (ydf , zdf ) Rows that appear in both ydf and zdf (Intersec7on). pd.merge (ydf , zdf , how='outer') Rows that appear in either or both ydf and zdf (Union). pd.merge (ydf , zdf , how='outer', indicator=True) .query('_merge == " left_only "') .drop(['_merge'],axis=1) Rows that appear in ydf but not zdf (Setdiff ).
Group Data
df.groupby (by="col") Return a GroupBy object, grouped by values in column named "col". df.groupby (level=" ind ") Return a GroupBy object, grouped by values in index level named " ind ". All of the summary func7ons listed above can be applied to a group. Addi7onal GroupBy func7ons: max(axis=1) Element-wise max. clip(lower=-10,upper=10) Trim values at input thresholds min(axis=1) Element-wise min. abs() Absolute value. The examples below can also be applied to groups. In this case, the func7on is applied on a per-group basis, and the returned vectors are of the length of the original DataFrame .
Windows
df.expanding () Return an Expanding object allowing summary func7ons to be applied cumula7vely. df.rolling (n) Return a Rolling object allowing summary func7ons to be applied to windows of length n. size() Size of each group. agg (function ) Aggregate group using func7on.
Handling Missing Data
df.dropna () Drop rows with any column having NA/null data. df.fillna (value) Replace all NA/null data with value.
PloUng
df.plot.hist () Histogram for each column df.plot.scatter (x=' w',y ='h') Sca.er chart using pairs of points h.p://pandas.pydata.org/ This cheat sheet inspired by Rstudio Data Wrangling Cheatsheet (h.ps://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf ) Wri.en by Irv Lus7g, Princeton Consultants
X