• Название:

    МАССАГЕТ ДЕЙСТВИТЕЛЬНО КРУТ!!!! копия


  • Размер: 0.05 Мб
  • Формат: ODT
  • или
  • Сообщить о нарушении / Abuse

Установите безопасный браузер



1,2-Действие физических и химических факторов на микроорганизмы. Понятие о стерилизации, дезинфекции, асептике и антисептике.

Влияние физических факторов.

Влияние температуры. Различные группы микроорганизмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) — мезофилами, при высокой — термофилами.

К психрофильным микроорганизмам относится большая группа сапрофитов — обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, светящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бактерии (возбудитель псевдотуберкулеза размножается при температуре 4 °С). В зависимости от температуры культивирования свойства бактерий меняются. Интервал температур, при котором возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум — от 15 до 40 °С, приближаясь к температурному оптимуму мезофильных бактерий.

Мезофилы включают основную группу патогенных и условно-патогенных бактерий. Они растут в диапазоне температур 10— 47 °С; оптимум роста для большинства из них 37 °С.

При более высоких температурах (от 40 до 90 °С) развиваются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при температуре 250—300 °С и давлении 262 атм.

Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компостом. Поскольку навоз наиболее богат термофилами, их рассматривают как показатель загрязненности почвы.

Хорошо выдерживают микроорганизмы действие низких температур. Поэтому их можно долго хранить в замороженном состоянии, в том числе при температуре жидкого газа (—173 °С).

Высушивание. Обезвоживание вызывает нарушение функций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гонореи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.

Высушивание под вакуумом из замороженного состояния — лиофилизацию — используют для продления жизнеспособности, консервирования микроорганизмов. Лиофилизированные культуры микроорганизмов и иммунобиологические препараты длительно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.

Действие излучения. Неионизирующее излучение — ультрафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение — гамма-излучение радиоактивных веществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предметов в больницах, родильных домах, микробиологических лабораториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200—450 нм.

Ионизирующее излучение применяют для стерилизации одноразовой пластиковой микробиологической посуды, питательных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию ионизирующих излучений, например Micro coccusradiodurans была выделена из ядерного реактора.

Действие химических веществ.

Химические вещества могут оказывать различное действие на микроорганизмы: служить источниками питания; не оказывать какого-либо влияния; стимулировать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфицирующими. Антимикробные химические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д.

Химические вещества, используемые для дезинфекции, относятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям.

Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли).

Стерилизация – предполагает полную инактивацию микробов в объектах, подвергшихся обработке.

Дезинфекция — процедура, предусматривающая обработку загрязненного микробами предмета с целью их уничтожения до такой степени, чтобы они не смогли вызвать инфекцию при использовании данного предмета. Как правило, при дезинфекции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.

Асептика – комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.

Антисептика – совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.

3- Стерилизация (от лат. sterilis - бесплодный) - полное освобождение различных веществ и предметов от живых микроорганизмов. Понятие стерилизации обозначает уничтожение всех способных к размножению микробов. Особенно важно, что при стерилизации уничтожаются также споры. Поэтому однозначным требованием является следующее: все медицинские инструменты и предметы ухода за пациентом, проникающие в стерильные в норме ткани, сосуды, или контактирующие с кровью и инъекционными растворами, считаются "критическими" предметами. К ним, например, относятся: хирургические инструменты, мочевые и сосудистые катетеры, иглы. Критические инструменты представляют высокий риск инфицирования в случае их микробной контаминации. Таким образом, предметы медицинского назначения этой категории должны быть подвергнуты стерилизации.

Методы стерилизации, аппаратура.

Стерилизация предполагает полную инактивацию микробов в объектах, подвергающихся обработке.

Существует три основных метода стерилизации: тепловой, лучевой, химической.

Тепловая стерилизацияоснована на чувствительности микробов к высокой температуре. При 60оС и наличии воды происходит денатурация белка, деградация нуклеиновых кислот, липидов, вследствие чего вегетативные формы микробов погибают. Споры, содержащие очень большое количество воды в связанном состоянии и обладающие плотными оболочками, инактивируются при 160—170 °С.

Для тепловой стерилизации применяют, в основном, сухой жар и пар под давлением.

Стерилизацию сухим жаром осуществляют в воздушных стерилизаторах (прежнее название — «сухожаровые шкафы» или «печи Пастера»). Воздушный стерилизатор представляет собой металлический плотно закрывающийся шкаф, нагревающийся с помощью электричества и снабженный термометром. Обеззараживание материала в нем производят, как правило, при 160°С в течение 120 мин. Однако возможны и другие режимы: 200 °С - 30 мин, 180 °С - 40 мин.

Стерилизуют сухим жаром лабораторную посуду и другие изделия из стекла, инструменты, силиконовую резину, т. е. объекты, которые не теряют своих качеств при высокой температуре.

Большая часть стерилизуемых предметов не выдерживает подобной обработки, и поэтому их обеззараживают в паровых стерилизаторах.

Обработка паром под давлением в паровых стерилизаторах (старое название — «автоклавы») является наиболее универсальным методом стерилизации.

Паровой стерилизатор (существует множество его модификаций) — металлический цилиндр с прочными стенками, герметически закрывающийся, состоящий из водопаровой и стерилизующей камер. Аппарат снабжен манометром, термометром и другими контрольно-измерительными приборами. В автоклаве создается повышенное давление, что приводит к увеличению температуры кипения.

Поскольку кроме высокой температуры на микробы оказывает воздействие и пар, споры погибают уже при 120 °С. Наиболее распространенный режим работы парового стерилизатора: 2 атм. — 121 °С — 15—20 мин. Время стерилизации уменьшается при повышении атмосферного давления, а следовательно, и температуры кипения (136 °С — 5 мин). Микробы погибают за несколько секунд, но обработку материала производят в течение большего времени, так как, во-первых, высокая температура должна быть и внутри стерилизуемого материала и, во-вторых, существует так называемое поле безопасности (рассчитанное на небольшую неисправность автоклава).

Стерилизуют в автоклаве большую часть предметов: перевязочный материал, белье, коррозионно-устойчивые металлические инструменты, питательные среды, растворы, инфекционный материал и т. д.

Одной из разновидностей тепловой стерилизации является дробная стерилизация, которую применяют для обработки материалов, не выдерживающих температуру выше 100 °С, например, для стерилизации питательных сред с углеводами, желатина. Их нагревают в водяной бане при 80 °С в течение 30—60 мин.

В настоящее время применяют еще один метод тепловой стерилизации, предназначенный специально для молока — ультравысокотемпературный (УВТ): молоко обрабатывают в течение нескольких секунд при 130—150 °С.

Химическая стерилизацияпредполагает использование токсичных газов: оксида этилена, смеси ОБ (смеси оксида этилена и бромистого метила в весовом соотношении 1:2,5) и формальдегида. Эти вещества являются алкилирующими агентами, их способность в присутствии воды инактивировать активные группы в ферментах, других белках, ДНК и РНК приводит к гибели микроорганизмов.

Стерилизация газами осуществляется в присутствии пара при температуре от 18 до 80 °С в специальных камерах. В больницах используют формальдегид, в промышленных условиях — оксид этилена и смесь ОБ.

Перед химической стерилизацией все изделия, подлежащие обработке, должны быть высушены.

Этот вид стерилизации небезопасен для персонала, для окружающей среды и для пациентов, пользующихся простерилизованными предметами (большинство стерилизующих агентов остается на предметах).

Однако существуют объекты, которые могут быть повреждены нагреванием, например, оптические приборы, радио- и электронная аппаратура, предметы из нетермостойких полимеров, питательные среды с белком и т. п., для которых пригодна только химическая стерилизация. Например, космические корабли и спутники, укомплектованные точной аппаратурой, для их деконтаминации обезвреживают газовой смесью (оксид этилена и бромистого метила).

В последнее время в связи с широким распространением в медицинской практике изделий из термолабильных материалов, снабженных оптическими устройствами, например эндоскопов, стали применять обезвреживание с помощью химических растворов. После очистки и дезинфекции прибор помещают на определенное время (от 45 до 60 мин) в стерилизующий раствор, затем прибор должен быть отмыт стерильной водой. Для стерилизации и отмывки используют стерильные емкости с крышками. Простерилизованное и отмытое от стерилизующего раствора изделие высушивают стерильными салфетками и помещают в стерильную емкость. Все манипуляции проводят в асептических условиях и в стерильных перчатках. Хранят эти изделия не более 3 суток.

Лучевая стерилизацияосуществляется либо с помощью гамма-излучения, либо с помощью ускоренных электронов.

Лучевая стерилизация является альтернативой газовой стерилизации в промышленных условиях, и применяют ее также в тех случаях, когда стерилизуемые предметы не выдерживают высокой температуры. Лучевая стерилизация позволяет обрабатывать сразу большое количество предметов (например, одноразовых шприцев, систем для переливания крови). Благодаря возможности широкомасштабной стерилизации, применение этого метода вполне оправданно, несмотря на его экологическую опасность и неэкономичность.

Еще одним способом стерилизации является фильтрование. Фильтрование с помощью различных фильтров (керамических, асбестовых, стеклянных), а в особенности мембранных ультрафильтров из коллоидных растворов нитроцеллюлозы или других веществ позволяет освободить жидкости (сыворотку крови, лекарства) от бактерий, грибов, простейших и даже вирусов. Для ускорения процесса фильтрации обычно создают повышенное давление в емкости с фильтруемой жидкостью или пониженное давление в емкости с фильтратом.

В настоящее время все более широкое применение находят современные методы стерилизации, созданные на основе новых технологий, с использованием плазмы, озона.

Дробная стерилизация

Одной из разновидностей тепловой стерилизации является дробная стерилизация, которую используют для обработки материалов, не выдерживающих температуру выше 100 °С, например желатина, питательных сред с углеводами и др. Их нагревают в водяной бане при 80 °С в течение 30—60 мин, в результате чего вегетативные формы погибают. Процедуру повторяют 3 дня подряд. Между процедурами питательные среды выдерживают в термостате, что способствует прорастанию спор в случае их сохранения в среде. Иногда термическую обработку производят в автоклаве при 0,5 атм.

Тепловая стерилизация — наиболее надежный, экологически безопасный, дешевый и хорошо контролируемый метод. Однако ее невозможно применять в тех случаях, когда предметы и вещества повреждаются от действия высокой температуры. В этих ситуациях используют другие методы.

Тиндализация — способ стерилизации, предложенный Дж. Тиндалем.

Заключается в дробной обработке жидкостей и пищевых продуктов в текучем паре при 100 °С или при трёх- четырёхкратном нагревании их до 100—120 °С с промежутками в 24 ч.

За это время споры бактерий, выжившие при 100 °С, прорастают, и вышедшие из них вегетативные клетки бактерий погибают при последующем нагревании.

Пастеризация — процесс одноразового нагревания чаще всего жидких продуктов или веществ до 60 °C в течение 60 минут или при температуре 70—80 °C в течение 30 мин[1]. Технология была открыта в середине XIX века французским микробиологом Луи Пастером. Применяется для обеззараживания пищевых продуктов, а также для продления срока их хранения.

При такой обработке в продукте погибают вегетативные формы микроорганизмов, однако споры остаются в жизнеспособном состоянии и при возникновении благоприятных условий начинают интенсивно развиваться. Поэтому пастеризованные продукты (молоко, пиво и др.) хранят при пониженных температурах в течение ограниченного периода времени. Считается, что пищевая ценность продуктов при пастеризации практически не изменяется, так как сохраняются вкусовые качества и ценные компоненты (витамины, ферменты)[2].

В зависимости от вида и свойств пищевого сырья используют разные режимы пастеризации. Различают длительную (при температуре 63—65 °C в течение 30—40 мин), короткую (при температуре 85—90 °C в течение 0,5—1 мин) и мгновенную пастеризацию (при температуре 98 °C в течение нескольких секунд).

Дезинфекция (фр. des ... – от, и позднелат. infectio - заражение), методы и средства уничтожения болезнетворных микроорганизмов на путях передачи от источника инфекции к здоровому организму. Основная задача дезинфекции - прерывание механизма передачи инфекции обеззараживанием различных объектов (вода, поверхности объектов, пищевые продукты, предметы бытовой обстановки и др.).

4-

5- Наследственность и изменчивость - это два противоречивых и вместе с тем неразрывно связанных между собой процесса. Они основа развития живого мира. По сравнению с другими организмами изменчивость микробов наблюдается чаще и осуществляется легче и быстрее, это объясняется большой быстротой их размножения и пластичностью.

Изменяться могут самые разнообразные свойства микробов - морфологические, ферментативные, антигенные, патогенные и др. Различают ненаследственную и наследственную изменчивость.

Наследственность неразрывно связана с размножением, а размножение - с делением клеток, при котором происходит саморепродукция хромосом и ДНК.

6- модификациями . Модификации также контролируются геномом бактерий, но (в отличие от мутаций) не сопровождаются изменениями кодирующей структуры и быстро утрачиваются. Чаще всего у бактерий отмечаются морфологические (приводящие к обратимым изменениям формы) и биохимические (проявляются индуцибельным синтезом некоторых продуктов, чаще ферментов) модификации. Модификации возникают как адаптивные реакции бактериальных клеток на изменения окружающей среды, что позволяет им быстро приспосабливаться и сохранять численность популяции на жизнеспособном уровне. После устранения соответствующего воздействия, вызвавшего их образование, бактерии возвращаются к исходному фенотипу.

Стандартное проявление модификации - разделение однородной популяции на несколько типов. Этот феномен получил название диссоциация микробов .

7- Мутации бактерий принципиально не отличаются от мутаций эукариотических клеток. Особенностью мутаций у бактерий является относительная легкость их выявления, так как имеется возможность работать с большими по численности популяциями бактерий. По происхождению мутаиии могут быть:

• спонтанными;

• индуцированными. По протяженности:

• точечными;

•генными; хромосомными.

По направленности:

- прямыми;

- обратными.

8- ДИССОЦИАЦИЯ МИКРОБОВ, процесс, вызывающий частичное или полное превращение чистой бактериальной культуры нормального типа в один или несколько подтипов, отличающихся от исходного микроба по своему морфологическому строению, по внешнему виду колоний, по серологическим и биохим. свойствам.

Д. наступает или самопроизвольно или под влиянием нек-рых моментов, как-то: выращивание при неблагоприятной t°, примене- ние неподходящих питательных сред или голодание, физ. состояние среды (влажность, сухость, объем), давление кислорода, антисептические вещества, чужеродные белки, специфические сыворотки, продукты роста микробов (фильтраты гомологичных и даже гетерогенных культур) и т. д.

9-Генетические рекомбинации

процесс образования геномов, содержащих генетический материал от двух родительских форм. У бактерий осуществляется в результате конъюгации (см.), трансформации (см.), трансдукции (см.), сексдукции; у вирусов - в случае проникновения в клетку 2 вирусов, различающихся по набору генов. Частота Г. р. (частное от деления числа рекомбинантов на число зигот) для разных признаков колеблется в широких пределах - 10-6-10-9. Ее можно использовать для составления генетической карты. Г. р. являются одним из главных механизмов образования измененных форм организмов, в т. ч. Микробов

10- Плазмиды — фрагменты ДНК с молекулярной массой порядка 106~108 D, несущие от 40 до 50 генов. Выделяют автономные (не связанные с хромосомой бактерии) и интегрированные (встроенные в хромосому) плазмиды.

•Автономные плазмиды существуют в цитоплазме бактерий и способны самостоятельно репродуцироваться; в клетке может присутствовать несколько их копий.

•Интегрированные плазмиды репродуцируются одновременно с бактериальной хромосомой. Интеграция плазмид происходит при наличии гомологичных последовательностей ДНК, при которых возможна рекомбинация хромосомной и плазмидной ДНК (что сближает их с профагами).

• Плазмиды также подразделяют на трансмиссивные (например, F- или R-плазмиды), способные передаваться посредством конъюгации, и нетрансмиссивные.

Плазмиды выполняют регуляторные или кодирующие функции. Регуляторные плазмиды участвуют в компенсировании тех или иных дефектов метаболизма бактериальной клетки посредством встраивания в повреждённый геном и восстановления его функций. Кодирующие плазмиды привносят в бактериальную клетку новую генетическую информацию, кодирующую новые, необычные свойства (например, устойчивость к антибиотикам).

11-Плазмиды бывают трех типов: половой фактор бактерий, факторы стойкости бактерий к лекарствам и колициногены. Половой фактор кишечной палочки имеет молекулярную массу 65 х 106, длину 31 нм и содержит 100 000 пар нуклеотидов. По способности передаваться от одной бактерии к другой различают конъюгативные (трансмиссивные) и неконъюгативные (нетрансмиссивные) плазмиды.

12- Мигрирующие генетические элементы — отдельные участки ДНК, способные осуществлять собственный перенос (транспозицию) внутри генома. Транспозиция связана со способностью мигрирующих элементов кодировать специфический фермент рекомбинации — транспозазу.

Транспозоны (Tn-элементы) состоят из 2000-25 000 пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два концевых IS-элемента (рис. 4-15, Б). При включении в ДНК бактерий транспозоны вызывают дупликации, при выходе из определённого участка ДНК— делеций, при выходе и включении обратно с поворотом фрагмента на 180 градусов— инверсии. Транспозоны не способны к самостоятельной репликации и размножаются только в составе бактериальной хромосомы.

13-

14Микробиологические методы исследований — «золотой стандарт» микробиологической диагностики, так как результаты микробиологических исследований позволяют точно установить факт наличия возбудителя в исследуемом материале. Идентификацию чистых культур (до вида микроорганизма) проводят с учётом морфологических, тинкториальных, культуральных, биохимических, токситенных и антигенных свойств микроорганизма. Большинство исследований включает определение чувствительности к антимикробным препаратам у выделенного возбудителя. Для эпидемиологической оценки роли микроорганизма проводят внутривидовую идентификацию определением фаговаров, биоваров, резистентваров и т.д.

Полимера́зная цепна́я реа́кция (ПЦР) — экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты (ДНК) в биологическом материале (пробе).

Помимо амплификации ДНК, ПЦР позволяет производить множество других манипуляций с нуклеиновыми кислотами (введение мутаций, сращивание фрагментов ДНК) и широко используется в биологической и медицинской практике, например, для диагностики заболеваний (наследственных, инфекционных), для установления отцовства, для клонирования генов, выделения новых генов.

15- Химиотерапия и химиопрофилактика инфекционных болезней

Под химиотерапией инфекционных заболеваний понимают лечение бактериальных, вирусных, грибковых и протозойных заболеваний с помощью химиотерапевтических средств, т.е. таких лекарственных препаратов, которые избирательно подавляют развитие и размножение соответствующих инфекционных агентов в организме человека. В том случае, когда эти же лекарственные средства используют с профилактической целью, данный метод называют химиопрофилактикой. В настоящее время получено огромное количество различных противомикробных и противопаразитарных химиотерапевтических средств, отличающихся друг от друга по своему происхождению, химическому составу, механизмам антимикробного действия и другим свойствам. Однако их объединяют ряд общих признаков.

1.Отсутствие заметного токсического действия на организм человека. Безвредность данных препаратов устанавливается с помощью химиотерапевтического индекса - отношения минимальной терапевтической дозы к максимально переносимой. При индексе меньше единицы препарат может быть использован для лечения соответствующей инфекции, поскольку его терапевтическая доза будет меньше переносимой дозы.

2. Выраженное избирательное действие на микроорганизмы, определяемое антимикробным спектром того или иного химиотерапевтического препарата. Одни из них преимущественно действуют на грамположительные бактерии, другие - на грамотрицательные, третьи - на простейшие, четвертые - на грибы и т.д.

3. Бактериостатическое или бактерицидное действие. В первом случае речь идет о полном или частичном подавлении роста и размножения бактерий, во втором - об их гибели. Однако в конечном итоге бактериостатическое действие также приводит бактерии к гибели. Аналогичное действие химиотерапевтических средств на другие микроорганизмы называют микробостатическим или микробоцидным. Механизмы антимикробного действия данных препаратов различны, но, как правило, связаны с подавлением жизненно важных метаболических реакций, протекающих в микробных клетках.

4. Постоянное формирование лекарственно-устойчивых форм микроорганизмов. Механизмы этого явления разнообразны. Однако к одним из этих препаратов резистентные микроорганизмы образуются быстро, к другим - медленно. Перечисленные признаки указывают на то, что химиотерапевтические средства принципиально отличаются от антисептиков и дезинфектантов.

Химиотерапевтический индекс-величина, выражающая отношение максимально переносимой (толерантной), или 50% дозы химиотерапевтического средства к его минимальной (или 50%) лечебной или ингибирующей (микробоцидной, микробостатической) дозе, или наоборот. В первом варианте величина Х.и. должна быть больше 3. Постулируется (с рядом оговорок), что чем выше X. и., тем эффективнее препарат.

Основные группы химиотерапевтических средств:

Антибиотики и сульфаниламиды - Сульфаниламидные препараты (сульфаниламиды) - - к ним относятся производные сульфаниловой кислоты. Их противомикробное действие связано главным образом с тем, что они нарушают процесс получения микробами необходимых для их жизни и развития "ростовых" факторов - фолиевой кислоты и других веществ (Стрептоцид).

Мукорегуляторы и муколитики. Препараты усиливающие выделение мокроты и снижающие ее вязкость, для облегчения выделения из бронхиального дерева. Наиболее эффективны амбраксол, ацетилцистеин, растительные препараты из корня солодки.

Противокашлевые средства.Эти средства применяются, если кашель становится на столько сильным, что существенно ослабляет пациента, мешает спать, вызывает спазматические реакции (например, параксизмальный кашель).

БРОНХОЛИТИЧЕСКИЕ СРЕДСТВА - лекарственные средства, вызывающие расширение просвета и устранение спазма бронхов за счет расслабления их мышц. Б. с. применяют при бронхиальной астме, астматических бронхитах и других заболеваниях, сопровождающихся повышением тонуса бронхиальных мышц.

16-Антибиотик — вещество микробного, животного или растительного происхождения, способное подавлять рост микроорганизмов или вызывать их гибель.

Антибиотики природного происхождения чаще всего продуцируются актиномицетами, реже — немицелиальными бактериями.

Некоторые антибиотики оказывают сильное подавляющее действие на рост и размножение бактерий и при этом относительно мало повреждают или вовсе не повреждают клетки макроорганизма, и поэтому применяются в качестве лекарственных средств.

Некоторые антибиотики используются в качестве цитостатических (противоопухолевых) препаратов при лечении онкологических заболеваний.

Антибиотики не воздействуют на вирусы, и поэтому бесполезны при лечении заболеваний, вызываемых вирусами (например, грипп, гепатиты А, В, С, ветряная оспа, герпес, краснуха, корь).

В 1928 году ученый А. Флеминг провел обычный опыт в ходе длительного исследования защиты организма человека от инфекционных заболеваний. Вырастив штаммы микроорганизмов стафилококков, ученый увидел, что многие чашки для культивирования поражены обычной плесенью Penicillium, это вещество, благодаря которому хлеб при длительном лежании приобретает зеленый цвет. Вокруг некоторых пятен плесени ученый обнаружил область без бактерий. Отсюда Флеминг вывел, что обычная плесень синтезирует вещество, уничтожающее возбудители инфекции. Далее он обнаружил молекулу, которую сегодня мы называем пенициллином.

17-В основу классификации антибиотиков также положено несколько разных принципов.

По способу получения их делят на:

- природные;

- синтетические;

- полусинтетические (на начальном этапе получают естественным путем, затем синтез ведут искусственно).

Продуцентами большинства антибиотиков являются:

- актиномицеты,

- плесневые грибы;

но их можно получить и из:

- бактерий (полимиксины),

- высших растений (фитонциды)

- тканей животных и рыб (эритрин, эктерицид).

По направленности действия :

- антибактериальные;

- противогрибковые;

- противоопухолевые.

По спектру действия (числу видов микроорганизмов, на которые действуют антибиотики) они делятся на:

- препараты широкого спектра действия (цефалоспорины 3-го поколения, макролиды);

- препараты узкого спектра действия (циклосерин, линкомицин, бензилпенициллин, клиндамицин).

Заметим, что препараты узкого спектра в некоторых случаях могут быть предпочтительнее, так как не подавляют нормальную микрофлору.

18,19- По спектру действия антибиотики делят на пять групп в зависимости от того, на какие

микроорганизмы они оказывают воздействие. Кроме того, существуют противоопухолевые

антибиотики, продуцентами которых также являются актиномицеты. Каждая из этих групп

включает две подгруппы: антибиотики широкого и узкого спектра действия.

Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антибиотики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетра-циклины и др. Антибиотики узкого спектра действия эффективны в отношении небольшого круга бактерий, например поли-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.

В отдельные группы выделяют противотуберкулезные, проти-волепрозные, противосифилитические препараты.Противогрибковые антибиотики включают значительно меньшее число препаратов. Широким спектром действия обладает, например, амфотерицин В, эффективный при кандидо-зах, бластомикозах, аспергиллезах; в то же время нистатин, действующий на грибы рода Candida, является антибиотиком узкого спектра действия.

Антипротозойные и антивирусные антибиотики насчитывают небольшое число препаратов.Противоопухолевые антибиотики представлены препаратами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митоми-цин С.Антибактериальное действие антибиотиков может быть бактерицидным, т.е. вызывающим гибель бактерий (например, у пенициллинов, цефалоспоринов), и бактериостатичес-ким . задерживающим рост и развитие бактерий (например, у тетрациклинов, левомицетина). При увеличении дозы бактерио-статические антибиотики могут также вызывать гибель бактерий. Аналогичными типами действия обладают противогрибковые антибиотики: фунгицидным и фунгиостатическим.Обычно при тяжелых заболеваниях назначают бактерицидные и фунгицидные антибиотики.Действие антибиотиков на микроорганизмы связано с их способностью подавлять те или иные биохимические реакции, происходящие в микробной клетке. В зависимости от механизма действия различают пять групп антибиотиков:

А антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например, (3-

лактамы. Препараты этой группы характеризуются самой высокой избирательностью действия:

они убивают бактерии и не оказывают влияния на клетки микроорганизма, так как последние

не имеют главного компонента клеточной стенки бактерий . пептидогликана. В связи с этим

р-лактамные антибиотики являются наименее токсичными для макроорганизма;А антибиотики, нарушающие молекулярную организа-цию и синтез клеточных мембран. Примерами подобных препаратов являются полимиксины, полиены;

А антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов.

Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды,

левомицетин, вызывающие нарушение синтеза белка на разных уровнях;А антибиотики . ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифам-пицин . синтез РНК;А антибиотики, подавляющие синтез пуринов и аминокислот К этой группе относятся, например, сульфаниламиды

20-Побочные действия антибиотиков Эффективность применения антимикробных препаратов различных классов ограничивают их многочисленные побочные эффекты (токсические и аллергические реакции, дисбактериозы и т.д.).

Вредность антибиотиков. Токсические реакции от применения антибиотиков

Характер побочных явлений зависит от органотропности препарата, его дозировок и способов введения.

Поражения паренхимы печени от применения антибиотиков наиболее часто вызывают тетрациклины, рифампицин и левомицетин. Неграмотное применение последнего может привести к развитию своеобразного поражения, известного как синдром «серого ребёнка». Препарат метаболизирует в печени, образуя глюкурониды. При врождённой недостаточности глюкуронил трансферазы (например, при синдромах Жильбера- Майленграхта и Криглера-Найяра) левомицетин накапливается в крови в токсических концентрациях, развиваются общая слабость, рвота, появляется серый оттенок кожных покровов, боли в сердце, отёки и гепатомегалия, возможен летальный исход.

Поражения почек от применения антибиотиков нередко наблюдают при назначении амфотерицина В, связывающегося с холестерином мембран эпителия почечных канальцев. Нефротоксическое действие могут также оказать линкомицин, аминогликозиды (последние также обладают ототоксичностью вследствие влияния на VIII пару черепных нервов).

Поражения органов кроветворения от применения антибиотиков. Нарушения функций костного мозга (анемии, лейко- и тромбоцитопений, вплоть до апластического криза) относят к наиболее тяжёлым осложнениям антибиотикотерапии. Подобные поражения способен вызывать левомицетин. В ряде случаев проявления апластической анемии возникают даже после однократного приёма препарата.

21- Лекарственная устойчивость бактерий

Существуют два типа лекарственной устойчивости бактерий: естественная, или Природная, и приобретенная.

Естественная лекарственная устойчивость является видовым признаком. Она Присуща всем представителям данного вида и не зависит от первичного контакта (Контактов) с данным антибиотиком, в ее основе нет никаких специфических механизмов. Чаще всего эта резистентность связана с недоступностью мишеней для данного антибиотика, обусловленной очень слабой проницаемостью клеточной стенки и Цитоплазматической мембраны, или какими-либо другими причинами. Если низшая проницаемость свойственна нескольким антибиотикам, то она будет обусловливать полирезистентность таких бактерий. Приобретенная лекарственная устойчивость возникает у отдельных представите-данного вида бактерий только в результате изменения их генома. Возможны два варианта генетических изменений. Один из них связан с мутациями в тех или иных генах бактериальной хромосомы, вследствие которых продукт атакуемого гена перестает быть мишенью для данного антибиотика. Это происходит либо вследствие изменения структуры белка, либо потому, что он становится недоступным для антибиотика.

В другом случае бактерии становятся устойчивыми к антибиотику или даже сразу к нескольким антибиотикам благодаря приобретению дополнительных генов, носителями которых являются R-плазмиды. Никаких других механизмов приобретенной лекарственной устойчивости не существует. Однако, приобретая устойчивость к антибиотику, а тем более сразу к нескольким антибиотикам, такие бактерии получают наивыгоднейшие преимущества: благодаря селективному давлению антибиотиков происходит вытеснение чувствительных к ним штаммов данного вида, а антибиотикоустойчивые варианты выживают и начинают играть главную роль в эпидемиологии данного заболевания. Именно они и становятся источниками формирования тех клонов бактерий, которые обеспечивают эпидемическое распространение возбудителя. Решающую роль в распространении лекарственной устойчивости, в том числе множественной, играют R-плазмиды благодаря способности их к самопереносу.

22- Методы определения чувствительности к антибиотикам

Методы определения чувствительности бактерий к антибиотикам делятся на 2 группы: диффузионные и методы разведения.Определение чувствительности бактерий к антибиотикам:диффузионные методы:

-с использованием дисков с антибиотиками

-с помощью Е-тестов

методы разведения :

-разведение в жидкой питательной среде (бульоне)

-разведение в агаре

При определении чувствительности диско-диффузионным методом на поверхность агара в чашке Петри наносят бактериальную суспензию определенной плотности (обычно эквивалентную стандарту мутности 0,5 по McFarland) и затем помещают диски, содержащие определенное количество антибиотика. Диффузия антибиотика в агар приводит к формированию зоны

подавления роста микроорганизмов вокруг дисков. После инкубации чашек в термостате при температуре 35о-37оС в течение ночи учитывают результат путем измерения диаметра зоны вокруг диска в миллиметрах

23- МИКРОБИОЦЕНО - совокупность микроорганизмов, населяющих территорию с одинаковыми условиями существования

В конкретных экологических условиях между разными группами микробов устанавливаются определенные взаимоотношения, характер которых зависит от физиологических особенностей и потребностей совместно развивающихся микробов. Кроме того, микроорганизмы вступают в различного рода взаимоотношения не только между собой, но и с простейшими, высшими растениями и другими группами организмов, составляющих почвенное население.

В основном эти взаимоотношения можно условно подразделить на две большие группы: благоприятные — синергизм и неблагоприятные — антагонизм (рис. 193 и 194). Однако взаимоотношения между микробными сообществами далеко не всегда укладываются в рамки этих подразделений, так как они чрезвычайно сложны, разносторонни и вариабельны. Изменения во взаимоотношениях происходят вследствие изменений окружающих условий существования или в результате перехода микробов из одной стадии развития в другую. Можно отметить следующие формы взаимоотношений между микроорганизмами: сосуществование, метабиоз, симбиоз, конкуренция, хищничество, паразитизм, антагонизм.Сосуществованием, или нейтрализмом, называется такая форма взаимоотношений, когда организмы, развиваясь совместно, не приносят друг другу пи вреда, ни пользы. Метабиоз — использование продуктов жизнедеятельности одних микробов другими.

24- МИКРОФЛОРА ВОЗДУХА

В атмосферный воздух микроорганизмы попадают с поверхности земли и предметов вместе с подымающейся пылью, а также с мельчайшими капельками влаги, сдуваемыми с водной поверхности. Микроорганизмы находятся в воздухе обычно вместе с частицами пыли. Воздух не является благоприятной средой для развития микроорганизмов, так как в нем отсутствует капельно-жидкая вода. В воздухе микроорганизмы лишь временно могут сохранять жизнеспособность, и многие из них более или менее быстро погибают под влиянием высушивания и солнечных лучей.Количественный и качественный состав микрофлоры атмосферного воздуха может существенно изменяться в зависимости от климатических условий, времени года и других факторов. Над морями, горами, ледяными полями Арктики воздух содержит очень мало микробов. Значительно больше их в воздухе населенных местностей, особенно крупных промышленных городов. Чем больше в воздухе пыли, тем больше в нем микроорганизмов. Каждая пылинка может нести на себе множество микробов.Количество микробов в воздухе по мере удаления от населенных мест заметно снижается. Например, над Москвой на высоте 500 м содержится до 2700 клеток микроорганизмов в 1 м3 воздуха, 1000 м — 500-700 клеток. При удалении от города на 5—7 км на тех же высотах содержание бактерий уменьшается в 3—4 раза. Жизнеспособные микроорганизмы обнаружены даже в стратосфере, хотя их там очень мало. Зимой в воздухе микробов значительно меньше, чем летом. Ветры способствуют обогащению воздуха микробами, а выпадающие осадки значительно очищают от них воздух.Большое значение для уменьшения количества микробов в воздухе имеют зеленые насаждения. Листья деревьев и кустарников обладают значительной пылезадерживающей способностью. Состав микрофлоры воздуха нестабилен. В воздухе находятся обычно наиболее устойчивые против высыхания и действия ультрафиолетовых лучей различные микрококки, сарцины, споры бактерий и грибов, дрожжи. Могут встречаться и болезнетворные микроорганизмы, особенно устойчивые к высушиванию, например туберкулезные палочки, патогенные стрептококки и стафилококки, вирусы. Человек в среднем за сутки вдыхает 12000 л воздуха. При этом в дыхательных путях задерживаются 99,8% микроорганизмов, содержащихся в воздухе. На микрофлору воздуха следует обращать большое внимание, так как воздух служит источником инфицирования микробами пищевых продуктов. Через воздух могут передаваться и некоторые инфекционные заболевания, возбудители которых выделяются больными и бациллоносителями при разговоре, чихании, кашле.

25- МИКРОФЛОРА ПОЧВЫ

Почва является средой обитания микроорганизмов. Они находят в почве все условия, необходимые для своего развития: пищу, влагу и защиту от губительного влияния прямых солнечных лучей и высушивания.Количественный и качественный состав микрофлоры различных почв значительно колеблется .в зависимости от химического состава почвы, ее физических свойств, реакции, влагоемкости, степени аэрации. Существенно влияют также климатические условия, время года, способы сельскохозяйственной обработки почвы, характер растительного покрова и многие другие факторы.Неодинаково распространены микроорганизмы и по горизонтам почвы. Меньше всего их содержится обычно в самом поверхностном, толщиной в несколько миллиметров, слое, где микроорганизмы подвергаются неблагоприятному воздействию солнечного света и высушивания. Особенно обильно населен следующий слой почвы, толщиной до 5 см.. По мере углубления число микроорганизмов падает. На глубине 25 см, количество их в 10—20 раз меньше, чем в поверхностном слое толщиной 1—2 см, (по данным А. С. Разумова). Меняется с глубиной и состав микрофлоры. В верхних слоях почвы, содержащих много остатков животных и растений, а также подвергающихся хорошей аэрации, преобладают аэробные сапрофитные организмы, способные расщеплять сложные органические соединения. Чем глубже почвенные слои, тем беднее они органическими веществами; доступ воздуха в них затруднен, поэтому здесь преобладают анаэробные бактерии. Количество бактерий в почве измеряется сотнями и тысячами. Микрофлора почвы представлена разнообразными видами бактерий, актиномицетов, грибов, водорослей и простейших животных. К постоянным обитателям почвы относятся различные спороносные бактерии. Из аэробов чаще встречаются Bacillus mycoides, В. mesentericus, В. megatherium, из анаэробов Clostridium sporogenes, С. perfringens, С. putrificum. В почве находятся также бактерии маслянокислые, разлагающие клетчатку, нитрифицирующие, денитрифицирующие, азотфиксирующие. Наряду с обычными обитателями почвы могут встречаться и болезнетворные микроорганизмы, преимущественно спорообразующие бактерии, например возбудители столбняка, газовой гангрены, ботулизма и др. Поэтому загрязнение почвой пищевых продуктов представляет опасность. Патогенные бесспоровые бактерии (например, брюшнотифозные, дизентерийные) сохраняются в почве сравнительно недолго (недели, месяцы), а споры бактерий — годами.

26- МИКРОФЛОРА ВОДЫ

Природные воды представляют собой среду, в которой микроорганизмы могут размножаться. Интенсивность размножения микробов в воде зависит от ряда факторов и в первую очередь от наличия в ней пищи. Природные воды всегда содержат в большем или меньшем количестве растворенные органические и минеральные вещества, которые могут быть использованы микроорганизмами в процессе питания. Количественный и качественный состав микрофлоры различных природных вод разнообразен.Состав микрофлоры подземных вод (артезианской, ключевой и др.) зависит главным образом от глубины залегания водоносного слоя, характера грунта и почвы. Артезианские воды, находящиеся на больших глубинах, содержат очень мало микроорганизмов. Подземные воды, добываемые через обычные колодцы из неглубоких водоносных слоев, куда могут просачиваться поверхностные загрязнения, содержат обычно значительные количества бактерий, среди которых могут быть и болезнетворные. Чем выше расположены грунтовые воды, тем обильнее их микрофлора.Поверхностные воды, т. е. воды открытых водоемов (рек, озер, водохранилищ, прудов и т. п.), отличаются большим разнообразием и непостоянством химического состава и состава микрофлоры. Эти воды загрязняются остатками растений, промышленными и бытовыми отбросами. Загрязнения попадают в водоемы главным образом с дождевыми потоками и со сточными водами промышленных производств. Вместе с различными органическими и минеральными загрязнениями в водоемы вносится масса микроорганизмов, среди которых могут попадать патогенные.Возбудители кишечных инфекций и другие патогенные бактерии в воде длительно сохраняются вирулентными. Так, возбудитель брюшного тифа сохраняется в водопроводной воде 2— 93 дня, дизентерии—15—27, а холеры — 4—28 дней. В речной воде возбудители этих заболеваний сохраняют жизнеспособность в течение соответственно 4—183 дней, 12—90 и 1 — 90 дней. Во льду также в течение нескольких недель остаются жизнеспособными бактерии коли-тифозной группы.Состав и количество микробов открытого водоема зависят от химического состава воды, заселенности прибрежных районов, времени года и других причин.В чистых водоемах до 80% всей аэробной сапрофитной микрофлоры приходится на долю кокковых форм бактерий, остальные — преимущественно бесспоровые палочковидные бактерии. В реке, протекающей в районе крупных населенных пунктов или промышленных предприятий, вода может содержать сотни тысяч и миллионы бактерий в 1 см3, а выше этих пунктов — всего лишь сотни или тысячи бактерий.В воде прибрежной зоны водоемов, особенно стоячих, микроорганизмов больше, чем вдали от берегов. Больше микроорганизмов содержится также в поверхностных слоях воды, но особенно много их в иле, главным образом в его верхнем слое, где образуется как бы пленка из бактерий, играющая большую роль в процессах превращения веществ в водоеме. Сильно возрастает число бактерий в открытых водоемах во время весеннего половодья или после обильных дождей.Среди водных организмов есть такие, массовое развитие которых может принести значительный вред. Бурное развитие микроскопических водорослей обусловливает «цветение» водоемов. Даже при небольшом цветении резко ухудшаются органолептнческие свойства воды, осложняется работа фильтров на водопроводных станциях. Массовое развитие некоторых видов сине-зеленых водорослей может служить причиной падежа скота, отравления рыбы, заболеваний людей.

27- Понятие о нормальной микрофлоре тела человека Нормальная микрофлора сопутствует своему хозяину на протяжении всей его жизни. О существенном ее значении в поддержании жизнедеятельности организма свидетельствуют наблюдения за животными-гнотобионтами (лишенными собственной микрофлоры), жизнь которых существенно отличается от таковой нормальных особей, а порой просто невозможна. В этой связи учение о нормальной микрофлоре человека и ее нарушениях представляет собой весьма существенный раздел медицинской микробиологии.

В настоящее время твердо установленным является положение о том, что организм человека и населяющие его микроорганизмы — это единая экосистема.

С современных позиций, нормальную микрофлору следует рассматривать как совокупность множества микробиоценозов, характеризующихся определенным видовым составом и занимающих тот или иной биотип в организме. В любом микробиоценозе следует различать:

• индигенную, автохтонную флору — характерные, постоянно встречающиеся виды микроорганизмов. Их количество относительно невелико, но численно они всегда представлены наиболее обильно

• аллохтонную флору — транзиторные, добавочные и случайные. Видовой состав таких микроорганизмов разнообразен, но они немногочисленны.

Поверхности кожи и слизистых оболочек тела человека обильно заселены бактериями. При этом количество бактерий, населяющих покровные ткани (кожу, слизистые оболочки), во много раз превосходит число собственных клеток хозяина. Количественные колебания бактерий в биоценозе могут достигать для некоторых бактерий нескольких порядков и тем не менее укладываются в принятые нормативы. Сформировавшийся микробиоценоз существует как единое целое. как сообщество объединенных пищевыми цепями и связанных микроэкологией видов.Совокупность микробных биоценозов, встречающихся в организме здоровых людей, составляет нормальную микрофлору человека.В настоящее время нормальную микрофлору рассматривают как самостоятельный экстракорпоральный орган. Он имеет характерное анатомическое строение — биопленку,и ему присущи определенные функции.Установлено, что нормальная микрофлора обладает достаточно высокой видовой и индивидуальной специфичностью и стабильностью.

28- Микрофлора — совокупность разных типов микроорганизмов, населяющих какую-либо среду обитания. Микрофлора воды, воздуха, горных пород, почвы очень разнообразна, микрофлора рубца жвачных, поровых растворов разных видов почв и т. п. более специфична и включает микроорганизмы, находящиеся в тесных пищевых связях.

Микрофлора человека — это совокупность микроорганизмов, обитающих на коже и слизистых оболочках. Фактически она являет собой метаболическую систему, синтезирующую и разрушающую собственные и чужеродные субстанции, участвующие в адсорбции и переносе в организм человека как полезных, так и, увы, потенциально вредных веществ.Нормальное состояние микрофлоры называется эубиозом. Важнейшей функцией микрофлоры является ее участие в формировании резистентности организма различным заболеваниям и обеспечение предотвращения колонизации организма человека посторонними микроорганизмами.

Микрофлора человека включает разнообразные виды микроорганизмов. Общее количество микроорганизмов, обнаруживаемых у взрослого человека, достигает 1014, что почти на порядок больше числа клеток всех тканей человеческого организма. Основу микрофлоры человека составляют облигатно-анаэробные бактерии. Даже на коже в ее глубоких слоях число анаэробов в 3—10 раз превышает количество аэробных бактерий. В полости рта, в толстой кишке это соотношение может составлять до 1000:1.

29- Дисбактериоз кишечника – это синдром, при котором нарушается нормальное соотношение представителей кишечной микрофлоры. Согласно критериям Всемирной организации здоровья (ВОЗ) дисбактериоз не относится к заболеваниям. По мнению большинства ученых, дисбактериоз является не причиной, а следствием других патологий. Этот синдром, а также его диагностика и лечение являются предметом ожесточенных споров в медицинских кругах. Дисбактериоз считают или источником практически всех проблем со здоровьем, или микробиологическим термином, не имеющим большого практического значения.

Но никто не спорит с тем, что роль микрофлоры кишечника очень важна. Суммарный вес микроорганизмов, населяющий организм человека, составляет около 2 кг. Микрофлора представлена более 400 видами бактерий. Она обеспечивает нормальный газообмен в кишечнике, способствует обновлению клеток его слизистой оболочки, синтезирует витамины, повышает активность кишечных ферментов, очищает организм от токсинов, стимулирует работу лимфоидных клеток кишечника, которые продуцируют вещества, защищающие от инфекций, и т.д. Состав микрофлоры каждого человека уникален. При этом он меняется в зависимости от возраста, времени года, характера питания. Поэтому судить о том, какая микрофлора является «нормальной» довольно сложно.

Эубиотики — препараты и пищевые продукты, содержащие молочно-кислые бактерии: ацидофилин, бифи-добактерин, лактобактерин, наринэ, витафлор, ферви-тал, колибактерин и другие. Другое название — пробиотики. Это полезные бактерии, которые населяют желудочно-кишечный тракт и не дают размножаться дрожжевым грибкам. Именно они вырабатывают химические вещества, которые позволяют поддерживать процесс пищеварения и препятствуют размножению болезнетворных бактерий.