Лекция2_Биосинтез жирных кислот_текст

Формат документа: doc
Размер документа: 0.06 Мб




Прямая ссылка будет доступна
примерно через: 45 сек.



  • Сообщить о нарушении / Abuse
    Все документы на сайте взяты из открытых источников, которые размещаются пользователями. Приносим свои глубочайшие извинения, если Ваш документ был опубликован без Вашего на то согласия.

Биосинтез жирных кислот

Ранее предполагали, что процессы расщепления являются обращением процессов синтеза, в том числе синтез жирных кислот рассматривали как процесс, обратный их окислению.
В настоящее время установлено, что митохондриальная система биосинтеза жирных кислот, включающая несколько модифицированную последовательность реакции β-окисления, осуществляет только удлинение уже существующих в организме среднецепочечных жирных кислот, в то время как полный биосинтез пальмитиновой кислоты из ацетил-СоА активно протекает вне митохондрий по совершенно другому пути.
Рассмотрим некоторые важные особенности пути биосинтеза жирных кислот.
1. Синтез происходит в цитозоле в отличие от распада, который протекает в митохондриальном матриксе.
2. Промежуточные продукты синтеза жирных кислот ковалентно связаны с сульфгидрильными группами ацилпереносящего белка (АПБ), тогда как промежуточные продукты расщепления жирных кислот связаны с коферментом А.
3. Многие ферменты синтеза жирных кислот у высших организмов организованы в мультиферментный комплекс, называемый синтетазой жирных кислот. В противоположность им ферменты, катализирующие расщепление жирных кислот, повидимому, не склонны к ассоциации.
4. Растущая цепь жирной кислоты удлиняется путем последовательного присоединения двухуглеродных компонентов, происходящих из ацетил-СоА. Активированным донором двухуглеродных компонентов на стадии элонгации служит малонил-АПБ. Реакция элонгации запускается высвобождением СО2.
5. Роль восстановителя при синтезе жирной кислоты выполняет NАDРН.
6. В реакциях также участвует Мn2+.
7. Элонгация под действием комплекса синтетазы жирных кислот останавливается на этапе образования палъмитата (С16). Дальнейшая элонгация и введение двойных связей осуществляются другими ферментными системами.

Образование малонилкофермента А
Синтез жирных кислот начинается с карбоксилирования ацетил-СоА в малонил-СоА. Эта необратимая реакция представляет собою решающий этап в синтезе жирных кислот.
Синтез малонил-СоА катализируется ацетил-СоА-карбоксилазой и осуществляется за счет энергии АТР. Источником СО2 для карбоксилирования ацетил-СоА является бикарбонат.
Рис. Синтез малонил-СоА
Ацетил-СоА-карбоксилаза содержит в качестве простетической группы биотин.
Рис. Биотин
Фермент состоит из переменного числа одинаковых субъединиц, каждая из которых содержит биотин, биотинкарбоксилазу, карбоксибиотин-переносящий белок, транскарбоксилазу, а также регуляторный аллостерический центр, т.е. представляет собой полиферментный комплекс. Карбоксильная группа биотина ковалентно присоединяется к ε-аминогруппе остатка лизина карбоксибиотин-переносящего белка. Карбоксилирование биотинового компонента в образованном комплексе катализируется второй субъединицей - биотин-карбоксилазой. Третий компонент системы – транскарбоксилаза – катализирует перенос активированного СО2 от карбоксибиотина на ацетил-СоА.

Биотин-фермент + АТР + НСО3- ↔ СО2~Биотин-фермент + АDР + Pi,
СО2~Биотин-фермент + Ацетил-СоА ↔ Молонил-СоА + Биотин-фермент.

Длина и гибкость связи между биотином и переносящим его белком обусловливают возможность перемещения активированной карбоксильной группы от одного активного центра ферментного комплекса к другому.
У эукариот ацетил-СоА-карбоксилаза существует в виде лишенного ферментативной активности протомера (450 кДа) или в виде активного нитевидного полимера. Их взаимопревращение регулируется аллостерически. Ключевым аллостерическим активатором служит цитрат, который сдвигает равновесие в сторону активной волокнистой формы фермента. Оптимальная ориентация биотина по отношению к субстратам достигается в волокнистой форме. В противоположность цитрату пальмитоил-СоА сдвигает равновесие в сторону неактивной протомерной формы. Таким образом, пальмитоил-СоА, конечный продукт, ингибирует первый решающий этап в биосинтезе жирных кислот. Регуляция ацетил-СоА-карбоксилазы у бактерий резко отличается от таковой у эукариот, так как у них жирные кислоты являются прежде всего предшественниками фосфолипидов, а не резервным топливом. Здесь цитрат не оказывает действия на ацетил-СоА-карбоксилазу бактерий. Активность транскарбоксилазного компонента системы регулируется гуаниновыми нуклеотидами, которые координируют синтез жирных кислот с ростом и делением бактерий.

Синтез жирных кислот
Ферментная система, катализирующая синтез насыщенных длинноцепочечных жирных кислот из ацетил-СоА, малонил-СоА и NADРН, называется синтетазой жирных кислот.
Имеются два типа синтазных комплексов. У бактерий, растений и низших форм животных, таких, как эвглена, все индивидуальные ферменты синтазной системы находятся в виде автономных полипептидов. Ацильные радикалы (субстрат) связаны с одним из них, получившим название ацилпереносящии белок (АПБ). У дрожжей, млекопитающих и птиц синтазная система представляет собой полиферментный комплекс, который нельзя разделить на компоненты, не нарушив его активности. В данном случае АПБ является частью этого комплекса. Как АПБ бактерий, так и АПБ полиферментного комплекса содержат витамин пантотеновую кислоту в виде 4'-фосфопантетеина (Рис).
Рис. Фосфопантетеин
В синтазной системе АПБ выполняет роль СоА. Синтазный комплекс, катализирующий образование жирных кислот, является димером (рис. 23.6).
Рис. Синтетаза жирных кислот: строение
У животных мономеры идентичны и образованы одной полипептидной цепью, включающей 6 ферментов, катализирующих биосинтез жирных кислот, и АПБ с реакционноспособной SН-группой, принадлежащей 4'-фосфопантетеину. В непосредственной близости от этой группы расположена другая сульфгидрильная группа, принадлежащая остатку цистеина, входящего в состав 3-кетоацил-синтазы (конденсирующего фермента), которая входит в состав другого мономера. Поскольку для проявления синтазной активности необходимо участие обеих сульфгидрильных групп, синтазный комплекс активен только в виде димера.
Причем, в одном димерном синтазном комплексе имеются 2 активных центра, функционирующие независимо друг от друга, в результате одновременно образуются 2 молекулы пальмитиновой кислоты.
Рис. Биосинтез жирных кислот: реакции
На первом этапе процесса инициирующая молекула ацетил-СоА при участии трансацилазы взаимодействует с –SН-группой цистеина. Mалонил-СоА под действием того же фермента (трансацилазы) взаимодействует с соседней –SН-группой, принадлежащей 4'-фосфопантетеину, локализованному в АПБ другого мономера. В результате этой реакции образуется ацетил(ацил)малонил-фермент. 3-Кетоацил-синтаза катализирует взаимодействие ацетильной группы фермента с метиленовой группой малонила и высвобождение СО2, в результате образуется 3-кетоацил-фермент (ацетоацетил-фермент); при этом освобождается сульфгидрильная группа цистеина, ранее занятая ацетильной группой. Декарбоксилирование позволяет реакции пройти до конца и является движущей силой биосинтеза. 3-Кетоацильная группа восстанавливается, затем дегидратируется и вновь восстанавливается, в результате образуется соответствующий насыщенный ацил-S-фермент. Эти реакции сходны с соответствующими реакциями β-окисления; отличие заключается, в частности, в том, что при биосинтезе образуется D(–)-изомер 3-гидроксикислоты, а не L(+)-изомер, кроме того, NАDРН, а не NАDН является донором водорода в реакциях восстановления. Далее новая молекула малонил-СоА взаимодействует с –SН-группой фосфопантетеина, при этом насыщенный ацильный остаток перемещается на свободную –SН-группу цистеина. Цикл реакций повторяется еще 6 раз, и каждый новый остаток малоната встраивается в углеродную цепь, до тех пор пока не образуется насыщенный 16-углеродный ацил-радикал (пальмитоил). Последний высвобождается из полиферментного комплекса под действием шестого фермента, входящего в состав комплекса, – тиоэстеразы (деацилазы). Свободная пальмитиновая кислота, прежде чем вступить в другой метаболический путь, должна перейти в активную форму ацил-СоА-производного. Затем активированный пальмитат обычно подвергается эстерификации с образованием ацилглицеролов.
Длинна синтезируемого ацильного фрагмента зависит от специфичности тиоэстеразы данной ткани. Например, в молочной железе имеется особая тиоэстераза, специфичная к ацильным остаткам С8-, С10- или С12-жирных кислот, входящих в состав липидов молока.
Объединение всех ферментов рассматриваемого метаболического пути в единый полиферментный комплекс обеспечивает его высокую эффективность и устраняет конкуренцию других процессов, в результате достигается эффект компартментации данного пути в клетке без участия дополнительных барьеров проницаемости.
Привидем суммарную реакцию биосинтеза пальмитиновой кислоты из ацетил-СоА и малонил-СоА:
Ацетил-СоА + 7Малонил-СоА + 14NАDРН + 7Н+ → Пальмитат + 7СО2 +
+ 14NАDР+ + 8СоА + 6Н2О.
При этом использовано следующее уравнение для синтеза малонил-СоА:
7Ацетил-СоА + 7СО2 + 7АТР → 7Малонил-СоА + 7АDР + 7Рi + 7Н+.

Отсюда выводим итоговую стехиометрию синтеза пальмитата:
8Ацетил-СоА + 7АТР + 14NАDРН → Пальмитат + 14NАDР+ + 8СоА +
+ 6Н2О + 7АDР + 7Рi.

Таким образом, из молекулы ацетил-СоА, выступающей в качестве затравки, образуются 15-й и 16-й углеродные атомы пальмитиновой кислоты. Присоединение всех последующих двухуглеродных фрагментов происходит за счет малонил-СоА-производного. В печени и молочной железе млекопитающих в качестве затравки может служить бутирил-СоА. Если в качестве затравки выступает пропионил-СоА, то синтезируются длинноцепочечные жирные кислоты с нечетным числом атомов углерода. Такие жирные кислоты характерны в первую очередь для жвачных животных, у которых пропионовая кислота образуется в рубце под действием микроорганизмов.
Источники восстановительных эквивалентов и ацетил-СоА
В реакции восстановления как 3-кетоацил, так и 2,3-ненасыщенных ацил-производных в качестве кофермента используется NADPH. Водород, необходимый для восстановительного биосинтеза жирных кислот, образуется в ходе окислительных реакций пентозофосфатного пути. Важно отметить, что ткани, в которых активно функционирует пентозофосфатный путь, способны эффективно осуществлять липогенез (например, печень, жировая ткань и молочная железа в период лактации). Кроме того, оба метаболических пути протекают в клетке вне митохондрий, поэтому переходу NАDРН/NАDР от одного метаболического пути к другому не препятствуют мембраны или другие барьеры. Другими источниками NАDРН являются реакция превращения малата в пируват, катализируемая яблочным ферментом (NАDР-малатдегидрогеназой), а также внемитохондриальная реакция, катализируемая изоцитратдегидрогеназой
Рис. Цикл ацетил-СоА
Ацетил-СоА, являющийся строительным блоком для синтеза жирных кислот, образуется в митохондриях из углеводов в результате окисления пирувата. Однако ацетил-СоА не может свободно проникать во внемитохондриальный компартмент – главное место биосинтеза жирных кислот. В связи с этим, путь использования пирувата в процессе липогенеза проходит через стадию образования цитрата. Этот метаболический путь включает гликолиз, затем окислительное декарбоксилирование пирувата до ацетил-СоА в митохондриях и последующую реакцию конденсации с оксалоацетатом с образованием цитрата, который является компонентом цикла лимонной кислоты. Далее цитрат перемещается во внемитохондриальный компартмент, где АТР-цитрат-лиаза в присутствии СоА и АТР катализирует его расщепление на ацетил-СоА и оксалоацетат.

Цитрат + АТР + СоА → Ацетил-СоА + АDР + Рi + Оксалоацетат

Ацетил-СоА превращается в малонил-СоА и включается в биосинтез пальмитиновой кислоты. Оксалоацетат под действием NАDН-зависимой малатдегидрогеназы может превращаться в малат:

Оксалоацетат + NАDН + Н+ ↔ Малат + NАD+,

затем в результате реакции, катализируемой яблочным ферментом, происходит образование NАDРН, который поставляет водород для пути липогенеза:

Малат + NАDР+ → Пируват + СО2 + NАDРН

Данный метаболический процесс обеспечивает перенос восстановительных эквивалентов от внемитохондриального NАDН к NАDР. В альтернативном случае малат может транспортироваться в митохондрии, где превращается в оксалоацетат.
Пируват + СО2 + АТР + Н2О → Оксалоацетат + АDР + Рi + 2Н+

Отметим также, что для работы цитрат(трикарбоксилат)-транспортирующей системы митохондрий необходим малат, который обменивается на цитрат.
Суммируя эти три реакции, получаем:

NАDР+ + NАDН + АТР + Н2О → NАDРН + NАD+ + АDР + Pi + H+

У жвачных содержание АТР-цитрат-лиазы и яблочного фермента в тканях, осуществляющих липогенез, незначительно. Это связано, повидимому, с тем, что у этих животных основным источником ацетил-СоА является ацетат, образующийся в рубце. Поскольку ацетат активируется до ацетил-СоА внемитохондриально, ему не нужно проникать в митохондрии и превращаться в цитрат, прежде чем включиться в путь биосинтеза длинноцепочечных жирных кислот. У жвачных животных из-за низкой активности яблочного фермента особое значение приобретает образование NАDРН, катализируемое внемитохондриальной изоцитратдегидрогеназой.

Микросомальная система удлинения цепей жирных кислот (элонгаза)

Микросомы, по-видимому, являются основным местом, где происходит удлинение длинноцепочечных жирных кислот. Ацил-СоА-производные жирных кислот превращаются в соединения, содержащие на 2 атома углерода больше. При этом малонил-СоА является донором ацетильной группы, а NАDРН – восстановителем. Промежуточными соединениями рассматриваемого пути являются тиоэфиры СоА. Затравочными молекулами могут служить насыщенные (С10 и выше) и ненасыщенные жирные кислоты. При голодании процесс удлинения цепей жирных кислот затормаживается.
Рис. Микросомальная система элонгации жирных кислот

Метаболизм ненасыщенных жирных кислот

Синтез мононенасыщенных жирных кислот

Мононенасыщенные жирные кислоты образуются из насыщенных жирных кислот в различных тканях, в том числе и в печени. Первая двойная связь появляется в насыщенной жирной кислоте почти всегда в Δ9-положении. Превращение пальмитоил-СоА или стеароил-СоА соответственно в пальмитолеил-СоА или олеил-СоА катализирует Δ9-десатуразная ферментная система, локализованная в эндоплазматическом ретикулуме; в реакции участвуют кислород и NADH или NADPH. Ферменты, входящие в эту систему относятся к типичным монооксигеназам и функционируют при участии цитохрома b5 (гидроксилазы).
Рис. Десатуразная активность

Синтез полиненасыщенных жирных кислот

Дополнительные двойные связи, вводимые в мононенасыщенные жирные кислоты, всегда отделены друг от друга метиленовой группой (искл. - бактерии). Животных все дополнительные двойные связи возникают между уже существующей двойной связью и карбоксильной группой, у растений они могут также образовываться между уже существующей двойной связью и ω-углеродным (концевым метильным) атомом.
Поскольку у животных имеется десатуразная система, они синтезируют ненасыщенные жирные кислоты путем комбинирования реакций элонгации (микросомальная система удлинения цепи) и десатурации.
Например, синтез ряда ненасыщенных жирных кислот (ω9) из олеиновой кислоты:

1. Олеиновая кислота (18:1) 18:220:220:3 …

2. Олеиновая кислота (18:1) 20:122:124:1

Незаменимые жирные кислоты

Животные не способны синтезировать ни линолевую (ω6), ни α-линоленовую (ωЗ) кислоты из-за отсутствия соответствующих десатураз; поэтому эти кислоты должны обязательно поступать с пищей, т.к. они необходимы для синтеза других полиненасыщевных жирных кислот ряда ω6 и ω3.
Иногда к незаменимым жирным кислотам относят и арахидоновую кислоту. Но в отличие от предыдущих она все же может синтезироваться из линолевой кислоты с использованием выше описанных механизмов. Поэтому, если с пищей поступает достаточное количество линоленовой кислоты, потребности организма в арахидоновой кислоте могут быть полностью удовлетворены.




X