Современный аквариум и химия (книга)

Формат документа: doc
Размер документа: 1.14 Мб





Прямая ссылка будет доступна
примерно через: 45 сек.



  • Сообщить о нарушении / Abuse
    Все документы на сайте взяты из открытых источников, которые размещаются пользователями. Приносим свои глубочайшие извинения, если Ваш документ был опубликован без Вашего на то согласия.

И. Г. Хомченко, А. В. Трифонов, Б. Н. Разуваев. "Современный аквариум и химия". г. Москва, "Новая волна".
ПРЕДИСЛОВИЕ
Аквариумистика в настоящее время приобрела большую популярность во всем мире. Значительно увеличилось число растений, рыб и других животных, которых содержат любители в своих домашних водоемах. Заметно возросли требования к декоративному оформлению аквариумов.
Высокий уровень развития аквариумистики не позволяет успешно содержать домашние водоемы, разводить растения и рыб без специальных знаний, в частности химии. Понимание химических процессов, протекающих в аквариуме, знание химического состава воды и умение управлять им, правильное использование химических препаратов — залог успеха в содержании и разведении рыб и водных растений (в том числе — наиболее трудных) и в общем благополучии декоративного аквариума.
Вопросы гидрохимии и использования химических препаратов обычно рассматриваются в книгах, посвященных общим вопросам аквариумистики, среди которых следует отметить книги М. Н, Ильина, В. С. Жданова, М. Д. Махлина, А. М. Кочетова. За рубежом выходили книги, посвященные аквариумной химии, например, монография Д. Холя, изданная в 1975 году в Лейпциге, Однако в ней изложены далеко не все вопросы, необходимые аквариумисту. В нашей стране подобных изданий не было, опыт авторов является первым.
Мы посчитали необходимым осветить в книге следующие вопросы: основные понятия общей химии и гидрохимии, которые необходимы аквариумисту (включая проведение простейших химических расчетов); описание химических процессов, которые протекают в аквариуме; общую и гидрохимическую характеристику различных регионов мира, в которых обитают аквариумные животные и растения; практические рекомендации по подготовке воды, проведению анализов, управлению составом воды в различных условиях, использованию различных препаратов химических и физико-химических методов; общие рекомендации по содержанию декоративных аквариумов. При этом авторы стремились максимально передать свой опыт и обобщить литературные данные (широко использованы как отечественные, так и зарубежные материалы).
Авторы книги - аквариумисты с большим стажем. В течение многих лет мы занимаемся коллекционированием водных растений, разведением рыб, проведением экспериментальных работ по гидрохимии аквариума, устройством декоративных водоемов. Поэтому мы считаем свое обращение к данной теме вполне оправ — данным. Однако мы не исключаем, что в книге имеются какие-то упущения, на которые любители - аквариумисты укажут нам. Будем признательны всем читателям, приславшим свои отзывы, замечания, пожелания, а также собственные материалы по теме книги.
Авторы признательны С. М. Кочетову за предоставленные слайды и информационные материалы, которые были использованы при работе над рукописью. Мы также выражаем благодарность московскому аквариумисту И. Годунову, который принял участие в написании главы Юго-Восточная Азия.
Авторы
1. ЗНАКОМСТВО С ОСНОВАМИ АКВАРИУМНОЙ ХИМИИ.
Аквариумистикой занимаются по-разному. Многие любители содержат аквариум, следуя известным рекомендациям и не вдаваясь в сущность процессов, происходящих в аквариуме, и при этом часто достигают успеха. Другие аквариумисты пытаются подробно разобраться в тех явлениях, которые происходят в домашнем водоеме. Для этого необходимы определенные знания гидрохимии, т. е. химии воды и водных растворов. Без таких знаний невозможно понять, почему в воде, взятой из одного источника, рыбы хорошо живут и размножаются, а в воде из другого — гибнут; почему одни растения чувствуют себя хорошо, а другие практически не растут; почему рыбы начинают чесаться о растения и камни и т. д. Не зная основ гидрохимии, невозможно освоить содержание и разведение новых редких видов обитателей аквариума и, конечно, не справиться с солоноводным и морским аквариумами.
Мы познакомим читателей с важнейшими понятиями химии, которые необходимы для понимания сложных химических, физико-химических и биохимических процессов, происходящих в аквариуме. При этом мы рассчитываем, что аквариумистам известны хотя бы элементарные химические понятия, которые изучаются в средней школе.
БОРЬБА С ВРЕДИТЕЛЯМИ АКВАРИУМНЫХ РАСТЕНИЙ И РЫБ
В аквариуме, населенном рыбами и растениями, развивается множество растительных и животных организмов. Они попадают в аквариум вместе с кормом, водой, растениями, рыбами, пылью. Одни из этих организмов являются необходимыми для аквариума, другие — безразличными, третьи — вредными. Некоторые необходимые или безразличные организмы при определенных условиях начинают активно размножаться и в этом случае могут стать вредными. К вредным организмам, в первую очередь, относятся возбудители болезней рыб, большинство попадающих в аквариум беспозвоночных животных. Безусловно вредно для аквариума чрезмерное развитие низших водорослей.
Водоросли в аквариуме
Водоросли — распространенная группа растительных организмов. Они встречаются во всех природных водоемах, могут жить в любых сырых местах, образуют симбиозы с другими организмами. Кто из аквариумистов не встречал их в своих аквариумах? Без водорослей немыслимо осуществление обмена веществ в аквариумной воде. Но не все они полезны для аквариума. Многие из них могут быть серьезными врагами аквариума. Они покрывают листья растений, дно и стенки, затрудняя при этом наблюдение за аквариумом и портя внешний вид. При сильном развитии водоросли угнетают растения, потребляют в темное время необходимый рыбам кислород, некоторые выделяют в воду токсичные вещества. Активно участвуя в процессах обмена веществ, водоросли, развившись в больших количествах, за короткий промежуток времени резко изменяют химический состав воды. Это может привести к гибели рыб и растений.
Многие водоросли в аквариуме живут преимущественно в толще воды. Именно эта группа может принести аквариумисту массу забот. Рассмотрим важнейшие группы водорослей, поселяющихся в аквариуме.
Сине-зеленые водоросли Cyanophyta — колониальные или нитчатые многоклеточные организмы. Имеют характерный цвет за счет пигмента фикоциана, который придает им черноватую, синеватую или коричневатую окраску. Многие виды имеют слизистое покрытие. Сине-зеленые водоросли обычно поселяются на дне аквариума, затем поднимаются выше, покрывая стенки и растения плотным слизистым слоем. В аквариуме появляется неприятный запах. Иногда они образуют плавающую форму из коротких волосков длиной от 1 до 3 мм. Причинами активного размножения этих водорослей являются избыток минеральных и, прежде всего, азотсодержащих соединений, низкий редокс-потенциал, излишки вносимых удобрений. Развитие этих водорослей происходит при интенсивном освещении. Часто сине-зеленые водоросли поражают новые аквариумы, что связано с недостаточной ассимиляционной способностью высших растений после пересадки.
Для предотвращения появления сине-зеленых водорослей во вновь устраиваемом аквариуме следует сажать сразу большое количество растений. Рекомендуется поместить быстрорастущие виды, плавающие в толще воды (наяс, элодею, пузырчатку и т. д.) Эти растения, начав активный рост, не дадут возможности развиваться сине-зеленым водорослям. При появлении водорослей рекомендуется также снизить рН до 6,0. Помощь в борьбе с ними оказывают Моллинезии и пецилии, хотя часто из-за горького вкуса рыбы отказываются поедать их. При появлении первых следов сине-зеленых водорослей помогают улитки: физы, катушки и мелании.
Бурые водоросли Bacillariophyta — одноклеточные и колониальные организмы. Имеют характерный коричневый цвет из-за содержания в них пигмента диатомина. Бурые водоросли распространяются в виде плотных плоских образований на растениях, грунте и стенках аквариума, придавая ему грязный вид, Водоросли очень плотно прикрепляются к поверхности, так что даже от стенки отскоблить их сложно, а от растений практически невозможно.
Бурые водоросли появляются в аквариуме при высоких показателях рН (выше 7,5) и при недостатке света. Улитки соскабливают эти водоросли с поверхности аквариума и растений. Для борьбы с бурыми водорослями следует увеличить освещение.
Нитчатые водоросли Chlorophyta относятся к зеленым водорослям и образуют на дне, на растениях пучки, похожие на рыхлую вату, иногда неплотно прикрепляются к стенкам или растениям. Конкурируют с высшими растениями, потребляя питательные вещества и свет. В плотных клубках нитчатых водорослей могут запутаться и погибнуть рыбы. Появление нитчатых водорослей свидетельствует о благоприятных условиях в аквариуме, интенсивном освещении и достаточном количестве питательных веществ.
Нитчатые водоросли следует регулярно удалять из аквариума во время чистки, отсасывая вместе с водой или наматывая на деревянную палочку. Многие растительноядные рыбы едят эти водоросли, но полностью обычно не уничтожают. Разросшиеся пучки удаляют вместе с пораженными растениями. Существуют химические методы борьбы, но они губительны для многих высших растений.
Одноклеточные зеленые водоросли, плавающие в толще воды (хламидомонада, хлорелла и т. д.), всегда присутствуют в аквариумной воде, а во время бурного развития вызывают цветение воды. Этот процесс связан с избытком света и растворенных минеральных солей. Для борьбы с цветением воды наиболее эффективно применение растительноядных рачков — дафний. Они идеально очищают аквариумную воду. Проблема при этом состоит в удалении рыб из аквариума с мутной водой перед посадкой туда дафний.
Бородатая водоросль — относится к роду Соmopogon. Среди аквариумистов она известна под названием черная борода или вьетнамка. Представляет собой длинные, малоразветвленные, довольно толстые нити, полупрозрачные, от темно — зеленого до почти черного цвета. Они прочно прикрепляются к листьям и камням. Растут обычно небольшими пучками. К листьям прикрепляются преимущественно по краям, а особенно охотно — к острым вершинам. В аквариум эти водоросли или их споры заносятся с новыми растениями. К свету не требовательны, но предпочитают освещенные места, жесткую воду и высокий показатель рН. Как все водоросли успешно развиваются при избытке нитратов.
Пораженные черной бородой листья крупных растений или участки стеблей мелколистных удаляются из аквариума, поскольку отделить водоросли от поверхности растений невозможно. Неплохие результаты в борьбе с этими вредителями дает использование молодых ампулярий с диаметром раковины до 15 мм. Существующие альгициды (вещества, применяемые для борьбы с водорослями) эффективно действуют на эти виды. Хорошо зарекомендовала себя продувка воды углекислым газом в течение 6—8 недель при рН 6,2—6,6.
Кроме перечисленных, на листьях растений и на стенках поселяются мелкие водоросли, представляющие собой небольшие (до 20 мм высотой) пучки нитей, выходящие из одной точки, или плоские пятна диаметром до 5 мм. Те и другие могут быть черного или зеленого цвета в зависимости от видовой принадлежности поселившихся водорослей. Они крепко прикрепляются к основе, и отделить их бывает трудно. Большого ущерба растениям они не наносят, но портят внешний вид.
Для борьбы можно использовать рыб и улиток, но они действенны в начальной стадии развития. Если начальный момент развития упущен, то необходимо тщательно очистить аквариум от обрастаний и удалить поврежденные листья и участки растений.
Вместо того, чтобы бороться с водорослями, гораздо проще устранить причины, вызывающие их бурное развитие. В аквариуме водоросли и высшие растении питаются одними и теми же минеральными веществами. Более совершенное строение высших растений позволяет им активно ассимилировать питательные вещества, а водорослям ничего не достается. По — этому аквариум должен содержать много растений. Практически все дно должно быть закрыто растениями. Аквариум следует хорошо осветить (мощность люминесцентных ламп на 1 л — 0,5—0,7 Вт). Плотность посадки рыб 0,5 г на 1 л воды. Весь корм для рыб при одноразовом кормлении должен съедаться за 10—15 мин. В аквариум желательно поместить улиток (физ, меланий, катушек) из расчета 1 улитка на 2— 3 литра. Растения должны быть обеспечены необходимым набором микроэлементов. В таких условиях выделяющиеся азотные соединения будут быстро ассимилироваться растениями. Нарушение хотя бы одного из этих условий создает возможность для размножения водорослей.
Мы уже сказали о биологических методах борьбы с водорослями. Эти методы, связанные с использованием улиток и рыб, эффективны на начальных стадиях поражения аквариума. Сейчас у аквариумистов есть довольно широкий выбор растительноядных рыб: живородки, гиринохейлусы, анциструсы и некоторые другие. Ни одна из этих рыб не очищает аквариум полностью. С цветением воды, как уже отмечалось, можно бороться при помощи дафний.
Появляющиеся водоросли необходимо регулярно удалять при чистке аквариума. Надо обрывать пораженные листья, а иногда и растения целиком. Бережливость здесь может только принести вред. Пленки и налеты из водорослей удаляют шлангом. При сильном развитии водорослей рекомендуется уменьшить или даже на время прекратить кормление рыб и провести несколько раз подмену воды, причем доливать воду следует из аквариума с хорошо развивающимися растениями. Очень полезно будет удалить всю грязь из аквариума. Эти меры уменьшат содержание минеральных веществ в воде и лишат водоросли обильного питания.
Если механические и биологические методы борьбы с водорослями не помогают, то придется воспользоваться химическими средствами.
Несмотря на то, что химические средства наиболее эффективны из всех имеющихся способов, следует признать, что пока еще не найдены средства, которые могут помочь аквариумистам во всех случаях. Вопрос борьбы с водорослями — одна из сложных проблем современной аквариумистики.
Известно, что большинство водорослей лучше развивается в жесткой воде с высоким показателем рН. Отсюда появились рекомендации, направленные на снижение рН. Это достигается добавлением в воду сильных кислот, что в некоторых случаях дает положительный результат, но далеко не всегда. Резкие скачки рН могут оказать неблагоприятное воздействие на рыб и растения. Кроме того, рН воды довольно быстро восстанавливается до исходного значения.
Для борьбы с сине-зелеными водорослями рекомендуется повышать редокс-потенциал воды путем добавления 3%-ного раствора пероксида водорода (Холь). Этот раствор надо вносить в аквариум по схеме: в первый день 3 мл/л, во второй — 3 мл/л, в третий — 5 мл/л. По нашим наблюдениям этот метод действует не всегда.
Испытано действие на сине-зеленые водоросли (Каль, Шидт) стрептомицина. Концентрация стрептомицина 3 мг/л безвредна для рыб и растений, но уничтожает водоросли в течение 120 ч. По наблюдениям этих же авторов развитию водорослей способствует спектральный состав освещения. Из отечественных люминесцентных ламп наиболее благоприятным спектром для развития водорослей обладают лампы типа ЛБ.
Имеются сведения о борьбе с черной бородой путем насыщения воды в аквариуме углекислым газом (Петере). Эта процедура оказалась безвредна для рыб и полностью уничтожает бороду.
В литературе описан электролитический способ, при котором в аквариум были опущены две медные пластины с подключенным источником постоянного тока (напряжение 6—7 В) на 4 ч (Кункель). Это оказалось губительно для нитчатых зеленых водорослей, но при этом погибли улитки и сомики.
Достаточно универсальными средствами борьбы с водорослями (альгицидами) являются соединения меди или цинка, которые вносят в виде растворов солей. В аквариумную воду вносится от 0,5 до 2 мг/л ионов меди или цинка.
Таким образом, легко избавиться от сине-зеленых водорослей и вьетнамки. Медь и цинк уничтожают также и бурые водоросли. На нитчатые зеленые водоросли их воздействие менее эффективно. Токсичная для водорослей концентрация губительно действует на некоторые растения. Часто погибают улитки, планарии и пиявки. Рыб на время лечения следует отсадить. После уничтожения водорослей аквариум следует почистить и произвести двух-трехразовую замену воды.
Существующие методы использования антибиотиков (в частности бициллина-5) в борьбе с сине-зелеными водорослями не дают надежных результатов. По-видимому, появляются новые, приспособленные к действию антибиотиков группы водорослей.
Химические средства борьбы с вредителями рыб
Химические препараты и методы нашли применение для борьбы с некоторыми видами животных, случайно попавших в аквариум и вредных для его обитателей.
Одним из нежелательных представителей беспозвоночных животных является гидра (Hydra fuska), попадающая в аквариум с кормом или растениями, чаще всего из природных водоемов. Это кишечнополостное животное имеет прозрачное тело высотой до 2 см. Присоской гидры прикрепляются к растениям, к грунту, к стеклам. Щупальца, расположенные вокруг ротового отверстия, почти неподвижно висят в воде и, реагируя на движение, захватывают добычу. При прикосновении щупалец к жертве начинают работать стрекательные клетки, парализующие схваченное животное. В аквариуме гидра может питаться рачками и мальками рыб.
В качестве биологических способов борьбы с гидрой рекомендуется использовать лабиринтовых рыб (гурами, макроподы), которые съедают гидр при недостатке другого корма. Однако этот метод не очень эффективен. Для борьбы с гидрой можно рекомендовать электрохимический способ: в воду погружают два куска зачищенной медной проволоки. К ним подключают источник постоянного тока с напряжением 9—12 В (батарейка Крона или аналогичная) на 1—2 минуты. За 3—4 сеанса этой процедуры гидры погибают.
Можно использовать в борьбе с гидрой соли аммония: сульфат (NH4)2SO4 или нитрат NH4NO3. Сульфат аммония вносят в концентрации 50 мг/л, а нитрат — 80 мг/л. Желательно повысить температуру воды до 28—34 С. В таких условиях гидры погибают через 3—6 дней. Для рыб внесение солей аммония практически безвредно, если вода имеет кислую или нейтральную реакцию (рН не более 7,5).
Применение различных химических препаратов в лечении рыб получило очень широкое распространение, т. к. они позволяют достаточно легко удалять болезнетворные микроорганизмы. Однако все аквариумисты должны помнить, что намного проще не допустить развитие болезней, чем вылечить своих питомцев. Поэтому мы уделим основное внимание использованию химических методов профилактики заболеваний.
Чтобы избежать попадание больной или зараженной рыбы в аквариум, рекомендуется провести карантинную обработку и карантинное содержание перед посадкой новой рыбы в аквариум в отдельном сосуде без грунта. Вода должна аэрироваться. За сосудом закрепляется собственный набор оборудования: сачки, скребки, распылители, термометры, шланги. Весь набор дезинфицируется после удаления рыб. На карантине рыба содержится в течение одного месяца. Если за это время признаков болезней не обнаружено, то рыбу помещают в общий аквариум. При появлении признаков болезни рыбу следует уничтожить. Аквариумный инвентарь и оборудование периодически дезинфицируют. Это можно сделать кипячением в течение 10— 15 минут. Однако не все можно прокипятить (например, аквариумы, термометры, изделия из пластика). В этом случае профилактическую дезинфекцию проводят с использованием одного из следующих растворов: 0,1—0,15%-ный перманганат калия KMnО4; 3%-ный хлорамин; 5%-ная серная (или соляная) кислота; 3%-ный формальдегид (в 100 мл воды растворяют 8 мл 40%-ного формалина). Дезинфекцию оборудования в этих растворах желательно проводить от одного до нескольких часов. Многие аквариумисты сачки постоянно держат в 3%-ном растворе хлорамина.
Значительно сложнее провести обеззараживание аквариумных растений, т. к. многие дезинфицирующие средства вызывают их гибель. Здесь можно рекомендовать промывку растений в 0,1%-ном растворе перманганата калия или 1—1,5%-ном растворе хлорида натрия (поваренной соли). Можно также рекомендовать профилактические ванны с использованием антибиотика бициллин-5 (15 000 ед/л) в течение 6 дней. Антибиотики ежедневно вносят в затемненный сосуд с растениями, а через 2 часа включают свет.
Для профилактики заболеваний рыб, гибели икры и лечения рыб любителям желательно иметь некоторые химические препараты. Рассмотрим некоторые из них.
Метиленовый голубой (или метиленовая синь) — хорошо растворимое в воде порошкообразное вещество, придающее растворам интенсивный синий цвет. Это вещество относится к сложным ароматическим аминам и обладает антисептическим действием. В концентрации 1—2 мг/л метиленовый голубой широко используется для предупреждения гибели икры рыб. Может быть использован в концентрации 0,5—0,7 мг/л для профилактических ванн, в которые помещают новых рыб (на 3 часа) перед посадкой в новый аквариум. Сосуды с препаратом могут быть использованы при лечении некоторых заболеваний рыб (костиоз, триходиноз и др.) по следующей схеме: выдержка по 5 ч ежедневно в течение четырех суток (первые два дня концентрация 0,5 мг/л, третий и четвертый — 0,7 мг/л). Следует отметить, что метиленовый голубой отрицательно воздействует на многие растения, поэтому применение его в аквариуме с растениями нежелательно.
К ароматическим аминам относятся и некоторые другие препараты, применяемые в аквариумистике: кристаллический фиолетовый, основной фиолетовый К, малахитовый зеленый, бриллиантовый зеленый (основной ярко-зеленый). Все они также обладают антисептическим действием и могут заменить метиленовый голубой. Однако эти вещества в растворах менее устойчивы, чем метиленовый голубой, поэтому их растворы нельзя хранить длительное время, особенно на свету.
Трипафлавин также относят к органическим ароматическим аминам, обладающим антибактериальным действием. Он представляет собой оранжево-красный порошок, легко растворимый в воде. Обычно его раствор используют с концентрацией вещества 6—10 мг/л при температуре воды около 30 С. Такой раствор имеет желто-зеленый цвет. Трипафлавин эффективен при профилактике ряда заболеваний и лечении костиоза, триходиноза, оодиноза, бархатной болезни и многих других заболеваний.
Аквариумистам надо помнить, что органические лекарственные препараты нельзя использовать в аквариумах с фильтрами (особенно содержащими гравий, уголь, смолу). Если есть необходимость удаления этих препаратов из воды, то наиболее эффективно пропускание ее через фильтр с активированным углем.
Не следует отказываться при профилактике заболеваний и лечении рыб от распространенных неорганических веществ. Прежде всего, это хлорид натрия (поваренная соль) в концентрации 1—1,5%, перманганат калия (0,001%), сульфат меди (0,01%). Эти препараты используют для профилактических ванн или лечения рыб в отдельных сосудах. Для этого необходимо приготовить три сосуда с водой для кратковременного содержания рыб. Перед посадкой рыб в первый сосуд вливается половина дозы лечебного препарата. После посадки в течение 4—5 мин добавляют остаток лекарства. После окончания сеанса лечения рыба переносится во второй сосуд на 30 минут, а затем — в третий, где и содержится до следующего сеанса. За это время первый и второй сосуды дезинфицируют.
С профилактикой заболеваний, дезинфекцией инвентаря и растений, лечением рыб аквариумисту приходится сталкиваться постоянно, поэтому в его хозяйстве должны быть обязательно многие из названных нами химических препаратов.
ХЛОРИРОВАННАЯ ВОДА
Водопроводная вода в населенных пунктах подвергается обеззараживанию. Одним из распространенных способов подготовки воды является растворение в ней хлора. Так называемая хлорированная вода довольно опасна для аквариумных обитателей.
Хлор представляет собой ядовитый зеленоватый газ со специфическим резким запахом, хорошо растворимый в воде. Его молекулы состоят из двух атомов — Cl2. Хлор не только дезинфицирующее средство, но и сильный окислитель и отбеливатель, поэтому его второе назначение — окисление и обесцвечивание органических веществ, содержащихся в воде. Хлор взаимодействует с водой, образуя соляную кислоту HCl и хлорноватистую HOCl:
Cl2 + H2O = HCl +HClO
Хлорноватистая кислота в некоторой степени диссоциирует на ионы H+ и OCl‾ (гипохлорит-ион):
HOCl = H+ + OCl‾
Содержание HOCl и ионов OCl‾ в воде зависит от ее кислотности (рис. 14). В кислой среде преобладают недиссоциированные молекулы HOCl, а в щелочной - гипохлорит-ионы OCl‾.
Рис. 14. Соотношение между хлорноватистой кислотой и гипохлорид-ионами в воде различной кислотности при температуре 20ОС.
Хлор, как уже отмечалось, является ядовитым веществом. Установлено, что токсичность водных растворов хлора обусловлена присутствием в них недиссоциированных молекул хлорноватистой кислоты HOCl, а ионы OCl‾ менее вредны. Поэтому хлорированная вода наиболее опасна, если она имеет кислую, нейтральную или очень слабощелочную реакцию. I Рыбы реагируют на очень низкие концентрации хлора: до 10‾ 8 — 10‾ 7 мг/л. Для большинства аквариумных рыб предельная концентрация хлора в воде — 0,25 мг/л. Известно, что хлорированная вода с содержанием Cl2 1 мг/л довольно быстро убивает практически всех рыб. Токсическое действие хлора связано с разрушением жаберных органов рыб. Вредна ли хлорированная вода для других животных и для человека? Оказывается — да. Но когда люди пьют такую воду, содержащийся в ней хлор быстро реагирует с органическими веществами, присутствующими в слюне и желудочном соке. Рыбы не имеют такого защитного механизма, поэтому для них хлорированная вода чрезвычайно опасна, т. к. обычная концентрация хлора в ней превышает летальную для рыб. Растения менее чувствительны к хлорированной воде, Лишь у видов с очень нежными тканями могут разрушаться листья. Однако, как правило, гибели растения не происходит.
Когда аквариумист использует хлорированную воду, ей необходимо дать отстояться 5—6 дней. За это время концентрация хлора снижается до вполне допустимой. Процесс удаления хлора из воды можно ускорить, если наполнять сосуды с водой из распылителя (например, из душа), а после наполнения аэрировать воду. Так она может быть подготовлена к посадке рыб за 2—3 дня.
Еще более быстрыми способами удаления хлора из воды являются химические методы. Разработаны препараты, которые взаимодействуют с растворимым хлором, превращая его в малотоксичные вещества. В качестве такого препарата можно использовать, например тиосульфат натрия Na2S2O3, восстанавливающий хлор до хлорид-ионов Cl‾:
4Cl2 + Na2S2O3 + 5 H2O = Na2SO4 + H2SO4 + 8HCl
Можно использовать также адсорбционный метод: при пропускании хлорированной воды через активированный уголь, хлор адсорбируется на нем и вода освобождается от токсичного компонента.
Особый вопрос — частая подмена воды в давно организованных аквариумах. Во многих руководствах сказано, что хлорированную воду при такой подмене можно заливать в аквариум без предварительной обработки. Действительно, это можно делать, т. к. в течение 1—2 секунд хлор реагирует с органическими веществами и аммиаком, которые содержатся в воде действующего аквариума, и не успевает оказать вредное действие на рыб. Однако количество заливаемой воды не должно превышать 20% объема аквариума. Если же есть возможность приготовить воду с помощью специальных препаратов или дать ей немного отстояться, то это всегда лучше сделать, чтобы обезопасить рыб. Особенно опасно использовать хлорированную воду в период весеннего паводка, когда для лучшего обеззараживания воды концентрацию хлора в ней повышают.
ОБ УГЛЕКИСЛОМ ГАЗЕ И КАРБОНАТАХ
Важную роль в аквариумных процессах играет оксид углерода (IV) или, как его чаще называют, углекислый газ. Он представляет собой соединение углерода с кислородом; в молекуле вещества один атом углерода связан с двумя атомами кислорода — CO2. Углекислый газ влияет на гидрохимические параметры воды (жесткость, pH, содержание различных веществ), он действует на рыб и других водных животных и играет важнейшую роль в развитии аквариумных растений.
Углекислый газ, как мы уже отмечали, хорошо растворим в воде; при температуре 20C в 100 г воды может раствориться 87,8 мл, или 172 мг CO2. Это значительно больше, чем растворимость таких газов, как кислород, водород, азот и др. (см. табл. 1).
Растворение CO2 в воде связано с химическим взаимодействием его молекул с водой, приводящее к возникновению угольной кислоты:
CO2 + H2O == H2СO3
Угольная кислота неустойчива, она может распадаться, поэтому часть растворенного в воде CO2 находится в свободном состоянии. Это слабая кислота, т. е. она диссоциирует на ионы в незначительной степени:
H2СO3 = H+ + HCO3‾
Так, в растворе, в котором содержится 100 мл CO2 в 1 л воды, приблизительно одна молекула из 50 диссоциирует на ионы. Очень малая часть образовавшихся гидрокарбонат-ионов HCO3‾ может также распадаться:
HCO3‾ = H+ + СO32‾
В результате диссоциации угольной кислоты в воде концентрация ионов H+ становится больше, чем ОН‾ и среда приобретает кислую реакцию (pH < 7).
Углекислый газ — постоянный компонент воздуха. Обычно в 1 м3 (1000 л) содержится около 300 мл CO2. В атмосфере жилых помещений содержание CO2 может быть выше за счет дыхания людей. Если мы учтем среднее содержание углекислого газа в воздухе, то при использовании микрокомпрессора для продувания аквариума с производительностью 50 л/ч, ежечасно аквариум будет получать 15 мл CO2. Растворение CO2 происходит и без продувки, за счет контакта поверхности воды с воздухом помещения. В этом случае, естественно, насыщение воды углекислым газом происходит значительно медленнее.
Другим источником CO2 в аквариуме является газ, выделяемый при дыхании рыбами и другими водными организмами (улитками, насекомыми, рачками и др.).
Водные растения на свету поглощают (ассимилируют) CO2, превращая его в органические соединения — углеводы, глюкозу и др. Этот процесс получил название фотосинтеза, он обычно выражается уравнением;

6СO2 + 6H2O =
С6Н12O6
+ 6O2


глюкоза


В темноте происходит обратный процесс:
С6Н12O6 + 6O2 = 6CO2 + 6H2O
приводящий к увеличению содержания CO2 в воде. Естественно, эти процессы будут оказывать тем более существенное влияние на гидрохимические процессы, чем больше растений содержится в аквариуме. Выделение углекислого газа растениями в ночное время может явиться причиной гибели рыб от удушья.
Еще один источник CO2 в аквариуме — выделение его при разложении (гниении и других процессах) различных органических веществ (старых листьев растений, останков рыб, избытка корма и т. п.).
Итак, углекислый газ в больших концентрациях токсичен для аквариумных животных. При большом содержании CO2 в воде он попадает в кровь рыб, вызывая удушье. Для нормального функционирования аквасистемы концентрация CO2 в аквариумной воде не должна превышать 4 мл/л.
В аквариумной практике приходится сталкиваться с необходимостью увеличения или уменьшения содержания углекислого газа в аквариумной воде. Увеличить концентрацию CO2 в воде можно, увеличив количество рыб, содержащихся в аквариуме. Иногда, при выращивании большого числа водных растений (в декоративном аквариуме) рекомендуют продувание воды углекислым газом из баллона или выделяющимся при химических реакциях (например, между мелом и кислотой: CaCO3 + 2HCl = CaCl2 + CO2 + H2O) или брожении некоторых веществ, а также добавление раствора CO2 (газированная вода). Все эти способы надо использовать очень осторожно, постоянно проводя анализ воды (измерять pH, dKH и содержание CO2), чтобы не нанести вреда находящимся в аквариуме рыбам.
Уменьшить содержание CO2 в аквариумной воде можно, уменьшив количество рыб или увеличив интенсивность и длительность освещения, чтобы активировать ассимиляционную деятельность водных растений. Многие аквариумисты считают, что продувка воды в аквариуме воздухом при помощи микрокомпрессоров приводит к уменьшению содержания CO2 за счет вытеснения его из воды растворенным воздухом, однако вытеснить некоторое количество CO2 удается лишь при большом его содержании. Концентрация CO2, близкая к нормальной, практически не изменяется при такой продувке. Если же CO2 в воде почти нет, то продувка атмосферным воздухом при помощи микрокомпрессоров приводит к увеличению содержания CO2 в воде.
Важная роль CO2 в гидрохимии аквариума состоит в установлении так называемого углекислотно-известкового равновесия. Это равновесие определяется главным образом тремя параметрами; концентрацией CO2 в воде, значениями pH и карбонатной жесткости dKH.
Карбонат кальция CaCO3 обладает очень плохой растворимостью в воде (7 мг в 1 л), что соответствует 2 жесткости. При растворении CO2 в воде карбонаты, которые практически всегда содержатся в грунте, начинают взаимодействовать с углекислым газом, с образованием гидрокарбонатов, которые хорошо растворимы в воде:
CaCO3 + CO2 + H2O = Ca(HCO3)2
Насыщая воду углекислым газом, можно добиться очень высокого содержания гидрокарбонатов (жесткость может подняться до 50 OdGH). Если содержание углекислого газа в воде уменьшается, то происходит обратный процесс;
Ca(HCO3)2 = CaCO3 + CO2 + H2O
Преимущественное протекание одного из процессов определяется значением pH в аквариумной воде. В табл. 11 показано, как зависит содержание углекислого газа в аквариумной воде от водородного показателя и карбонатной жесткости воды.
Таблица 11 Содержание углекислого газа в аквариумной воде (в мг/л) различной кислотности и карбонатной жесткости
dKH
pH 6
pH 6,5
pH 7
pH 7,5
pH 8

1
30
9,6
3,0
1,0
0,3

2
59
19,4
5,9
1,9
0,6

3
87
28,5
8,7
2,9
0,9

4
118
38,5
11,8
3,9
1,2

6
177
58,0
17,7
5,8
1,8

8
240
77,0
24,0
7,7
2,4

10
300
96,0
30,0
9,6
3,0

15
440
344
44,0
14,4
4,4

20
590
194
59,0
19,4
5,9

Эта таблица показывает, сколько необходимо растворить а воде CO2, чтобы при определенной жесткости установить требуемое значение pH. В то же время значения pH и dKH позволяют приблизительно судить о количестве CO2, содержащемся в воде аквариума.
Однако кислотность и карбонатная жесткость не являются единственными факторами, определяющими углекислотно-известковое равновесие воды в аквариуме. Это равновесие зависит от целого ряда факторов:
1. Объем (вместимость аквариума). Как правило, в аквариумах большого объема равновесные процессы более устойчивы.
2. Геометрические размеры аквариума (соотношение длины, высоты и ширины). В аквариуме с большой площадью поверхности лучше осуществляется газообмен, с воздухом.
3. Количество рыб и других аквариумных животных, выделяющих углекислый газ при дыхании.
4. Количество растений в аквариуме, которые, в зависимости от освещенности, выделяют или поглощают углекислый газ.
5. Интенсивность освещения, влияющая на жизнедеятельность аквариумных растений.
6. Химический состав воды, наливаемой в аквариум. Наиболее важный фактор — карбонатная жесткость (dKH).
7. Режим кормления рыб. Разлагающийся избыточный корм становится источником углекислого газа.
8. Температура воды. Влияет на растворимость карбонатов, углекислого газа, на скорость всех химических реакций.
9. Грунт. От содержания карбонатов в грунте зависит гидрохимический состав воды.
10. Движение воды за счет аквариумных фильтров, микрокомпрессоров, помп. Влияет на насыщение воды углекислым газом из воздуха и растворимость карбонатов.
Все указанные факторы говорят о сложной зависимости равновесия от условий содержания аквариума: из-за такого большого комплекса факторов часто бывает невозможно предугадать направление смещения углекислотно-известкового равновесия и соответствующее ему изменение гидрохимического состава аквариумной воды.
Расскажем подробнее о роли углекислого газа в жизнедеятельности растений. Как известно, растения состоят из органических соединений, т. е. соединений, основу (скелет) которых составляет углерод. Нарастание биомассы растений связано с необходимостью подпитки их извне соединениями углерода. Основным веществом, служащим для питания растений является углекислый газ. Растения ассимилируют (поглощают) CO2, превращая его в органические соединения — глюкозу, крахмал и другие (схема простейшего процесса описана выше).
Поглощение CO2 связано с изменением pH среды: сдвигом его значения в щелочную сторону. Содержание углекислого газа в аквариумной воде, как мы видели из табл. 11, снижается при уменьшении жесткости и уменьшении кислотности воды. Поэтому очень мягкая и особенно щелочная вода неблагоприятны для растений. Многие аквариумные растения прекращают рост даже в слабощелочной среде (при pH около 8).
Забирая углекислый газ из воды, растения сами ухудшают условия своего существования; для их улучшения необходим новый источник углерода. Некоторые растения могут использовать в процессе фотосинтеза только свободный CO2, растворенный в воде. Если весь углекислый газ израсходован, то процесс фотосинтеза прекращается, и рост растения останавливается.
Некоторые представители гидрофлоры приспособились в отсутствие в воде свободного углекислого газа поглощать CO2 из гидрокарбонатов кальция и магния, обусловливающих временную жесткость воды (биогенное умягчение воды). При этом происходят процессы?
Ca(HCO3)2 = CO2 (поглощается растением) + CaCO3 + H2O
Ca(HCO3)2 = 2CO2(поглощается растением) + Ca(ОН)2
В результате первой реакции образуются выпадающие в осадок карбонаты кальция и магния, образующие белый налет на листьях растений. В результате второй реакции, приводящей к более полному извлечению углерода из гидрокарбоната, образуется щелочь Ca(ОН)2, что влечет сильное увеличение pH. Например, элодея канадская (Elodea canadensis) может настолько полно поглощать углекислый газ из растворенных гидрокарбонатов, что pH поднимается до 10 и даже несколько выше. В таких условиях большинство других водных растений погибает. Поглощение CO2 из гидрокарбонатов, а, следовательно, и поглощение воды будет происходить тем интенсивнее, чем выше переменная (карбонатная) жесткость воды. Поэтому высокое значение dKH не может быть рекомендовано для аквариумов. По-видимому, предельная карбонатная жесткость dKH должна быть не больше 10—14.
О ВОДЕ И ДРУГИХ ЭЛЕКТРОЛИТАХ
(часть 1)
Главное в аквариуме — это вода. Вода выполняет множество функций. Это среда обитания водных животных, растений, микроорганизмов; растворитель и источник питательных веществ для них. Вода участвует в обмене веществ, происходящем в живых организмах и во многих других процессах.
Вода — одно из наиболее распространенных веществ на Земле. Все водные ресурсы нашей Планеты образуют так называемую гидросферу, в состав которой входят океаны, моря, реки, озера, болота, ледники, снега, подземные воды. На долю гидросферы приходится более 75% площади поверхности Земли (заметим, что пресноводные реки и озера занимают приблизительно 1,7%). По оценкам специалистов масса всей воды на Земле составляет 1,5- 1019 тонн. Если всю эту воду равномерно распределить по поверхности нашей планеты, то образуется океан глубиной 3 км.
Вода — вещество, обладающее очень интересными свойствами и имеющее достаточно сложную структуру. Некоторые свойства воды настолько необычны, что в литературе обычно говорится об аномалиях этого вещества, обусловленных его строением.
Вода может находиться в трех агрегатных состояниях: твердом (лед), жидком и газообразном (водяной пар). Вода замерзает, превращаясь в лед, при температуре 0C. При температуре 100C и нормальном давлении (1 атм.) вода кипит и переходит в пар. С этими крайними пределами состояния воды аквариумисты не встречаются. Обычно температура воды в домашнем водоеме +20 — + 28С. При содержании холодноводных рыб температуру можно опускать до +8 - + 16C, а при разведении или лечении рыб — поднимать до + 30 — + 35С.
Рыбы не любят резких колебаний температуры воды: если их переводят из одного температурного режима в другой, то желательно, чтобы повышение температуры было не более, чем на 2C в сутки, а понижение — на 1оС.
Важное физическое свойство любого вещества — это его плотность. Обычно эту величину обозначают символом ρ, а единицами измерения являются кг/л (кг/дм3), г/мл (г/см3), г/л. Плотность воды зависит от ее температуры. Так, при 0C она равна 0,99984 г/мл, при 20C — 0,99820 г/мл, а при 100C — 0,95835 г/мл. При температурах, близких к аквариумным условиям, в различных расчетах обычно округляют значение плотности воды до 1 г/мл.
Химическое строение воды достаточно простое: молекула состоит из одного атома кислорода и двух атомов водорода, ее химическую формулу обычно записывают так: H2O. Однако, вода имеет целый ряд особенностей, аномалий физических свойств, которые делают это простое вещество очень сложным.
Одна из важнейших особенностей воды (и в то же время,— одна из ее аномалий) заключается в том, что
вода при обычных условиях Земли является жидкостью. Многие близкие по химическому строению вещества (например, сероводород H2S) при этих условиях являются газами. Объяснить это свойство воды можно, если учесть строение ее частиц, показанное на рис. 1. Во-первых, молекула H2O имеет угловое строение. Во-вторых, молекула воды полярна, т. е. имеющиеся в ней заряженные частицы (электроны) распределены неравномерно; вблизи атома кислорода преобладает отрицательный заряд (избыток электронов), а вблизи атомов водорода — положительный заряд (недостаток электронов). На рис. 1 полярный характер молекулы воды показан знаками + и —. Разноименно заряженные части различных молекул воды притягиваются, возникают так называемые водородные связи, что показано на рис. 2 (водородные связи обозначены пунктиром). В результате такого взаимодействия образуются ассоциаты из молекул воды, формулу которых можно представить в виде (H2O)n, где п равно 1, 2, 3... При температуре 0C значение n обычно равно 3, а при 4C — 2. Ассоциаты полностью распадаются, лишь, когда вода переходит в пар. Прочные связи между молекулами обусловливают пребывание воды в жидком состоянии при обычных условиях, а также некоторые другие свойства этого вещества.
Рис.1. Строение молекулы воды
Рис.2. Водородные связи между молекулами воды
Важным свойством воды является ее способность растворять многие вещества, как неорганические (минеральные кислоты, щелочи, соли), так и органические (органические кислоты, спирты, фенолы, альдегиды и многие другие). Аквариумная вода представляет собой не что иное, как раствор большого числа веществ, как органического, так и неорганического происхождения. Аквариумистам следует уметь выражать количественный состав растворов, т. е. рассчитывать их концентрацию.
Один из наиболее распространенных способов выражения состава раствора — массовая доля растворенного вещества, которую принято обозначать буквой w. Массовая доля представляет собой отношение массы растворенного вещества m(р. в.) к массе раствора т. Обычно массовую долю выражают в процентах* и рассчитывают по формуле:

w =
m(р.в.) • 100
%
(1)


m



* Устаревшее название массовой доли растворенного вещества, выраженной в процентах, — процентная концентрация, В настоящее время это понятие, также как и термины процентный состав, процентное содержание в химической литературе не используются.
Что же показывает массовая доля? Например, известно, что массовая доля хлорида натрия NaCl в растворе составляет 3%. Это означает, что в 100 г раствора содержится 3 г NaCl и 97 г воды. Соответственно в 1 кг раствора содержится 30 г NaCl и 970 г воды.
В аквариумной практике часто приходится приготовлять растворы с определенной массовой долей (растворы лечебных препаратов, удобрений и др.). Приведем примеры расчетов.
Пример. Для лечения рыб нужно приготовить 500 г 1%-ного раствора перманганата калия KMnO4. Сколько следует взять соли и воды?
Решение. Вначале узнаем плотность требуемого раствора, Плотности некоторых растворов с заданной концентрацией можно определить по справочной литературе (см., например: Лидии Р. А., Андреева Л. Л., Молочко В. А. Справочник по неорганической химии. М.: Химия, 1987. С. 253—274).
Если плотность неизвестна, а раствор достаточно разбавленный (как в данном примере), можно считать, что плотность раствора ρ приблизительно равна плотности воды, т. е. ρ = 1 г/мл. Тогда масса раствора будет равна произведению его объема V = 0,5 л = 500 мл на плотность:
m = V • ρ;
(2)

m = 500 мл • 1 г/мл = 500 г.,


Используя формулу (1), рассчитаем массу перманганата калия, который потребуется для приготовления раствора:
M(KMnO4) =
w • m
;
m(KMnO4) =
1 • 500
= 5 г.


100


100


Итак, для приготовления раствора надо взять 5 г перманганата калия.
Массу воды мы найдем, вычитая массу соли из массы всего раствора:
m(H2O) = m — m(KMnO4);
m(H2O) = 500 г — 5 г = 495 г.
Учитывая, что плотность воды равна 1 г/мл, мы определяем: для приготовления заданного объема раствора надо взять 495 мл воды.
Более, сложный расчет надо провести в том случае, когда имеется более концентрированный раствор, из которого надо приготовить разбавленный раствор.
Пример. Имеется 30% — ный раствор соляной кислоты HCl. Требуется приготовить 100 мл 5%— ного раствора HCl. Определить, сколько для этого потребуется 30% —ной соляной кислоты и воды.
Решение. По справочным таблицам определяем, что плотность 5%-ного раствора HCl равна 1,02 г/мл, а 30% —ного — 1,15 г/мл. Вначале вычисляем массу раствора, который надо приготовить, — m2 (объем этого раствора V2, плотность ρ2, массовая доля HCl;— w2).
m2 = V2 • ρ2; m2 = 100 мл • 1,02 г/мл = 102 г.
Используя формулу (1), определяем массу соляной кислоты в 5% —ом растворе:
m(HCl) =
w2 • m2
;
m(HCl) =
5 • 102
= 5,1 г.


100


100


Теперь вычисляем массу исходного раствора m1, в котором содержится 5,1 г HCl (его объем -V1, плотность — ρ1; массовая доля HCl в этом растворе — w1,):
m1 =
m(HCl) • 100
;
m1 =
5,1 • 100
= 17 г.


w1


30


Зная плотность этого раствора, определяем его объем;
V1 =
m1
;
V1 =
17 г
= 14,8 мл.


ρ1


1,15 г/мл


Массу воды, которая потребуется для разбавления 30% —ного раствора, определяем так:
m(H2O) = m2 — m1;
m(H2O) = 102 г — 17 г = 85 г.
Таким образом, для приготовления 100 мл 5%— ного раствора HCl надо взять 14,8 мл 30% —ного раствора HCl и прилить 85 мл воды.
На этом примере также видно, что при смешении растворов сумма объемов двух компонентов не равна объему приготовленного раствора. Этот факт установил и теоретически обосновал Д. И, Менделеев.
Другим распространенным в аквариумной литературе способом выражения состава раствора является массовая концентрация, которая показывает сколько граммов или миллиграммов растворенного вещества содержится в 1 л раствора. Обозначение массовой концентрации, которое мы будем использовать в книге — x. Для расчета можно использовать формулу:
x =
m(р.в.)

(3)


V



где m(р. в) — масса растворенного вещества в г или мг.
Пример. Требуется приготовить 5л раствора лечебного препарата малахитового зеленого с концентрацией последнего 2 мг/л. Определите массу препарата, которую надо взять для приготовления раствора.
Решение. Используя формулу (3), получаем:
m(малах. зел) = x • V;
m(малах. зел) = 2 мг/л • 5 л = 10 мг.
Таким образом, чтобы приготовить требуемый раствор, надо взять посуду вместимостью 5 л (мерную колбу, мензурку, банку или аквариум с соответствующей отметкой), внести отвешенный малахитовый зеленый (10 мг), растворить его в небольшом количестве воды и довести объем раствора до 5 л.
В литературе по аквариумистике (особенно в изданной в США и Англии) часто используется единица концентрации, обозначенная буквами ррт (part per million — число частей из миллиона). Этот способ выражения состава раствора аналогичен массовой концентрации в мг/л. Например, 5 ррт = 5 мг/л.
Наконец, в некоторых расчетах, связанных с проведением химического анализа аквариумной воды, используется молярная концентрация c, которая показывает отношение количества растворенного вещества (в молях) n(р. в.) к общему объему раствора V:
c =
n(р.в.)

(4)


V



Молярная концентрация измеряется в моль/л. Для обозначения этой единицы часто используется символ М, Например, 1М — одномолярный раствор. Это означает, что c = 1 моль/л.
Количество растворенного вещества в молях определяется как отношение его массы m(р, в.) к молярной массе M(р. в.):
n(р.в.) =
m(р.в.)

(5)


M(р.в.)



Как пользоваться формулами (4) и (5), мы покажем на конкретном примере.
Пример. Рассчитайте массу щелочи NaOH (гидроксида натрия), которую нужно взять для приготовления 0,3 л раствора 0,5М NaOH.
Решение. Вначале надо рассчитать молярную массу NaOH. Для этого, пользуясь периодической системой элементов Д. И. Менделеева, находим атомные массы (Ar) натрия, кислорода и водорода и определяем молекулярную массу NaOH — Mr(NaOH):
Mr(NaOH) = Ar(М) + Ar(O) + Ar(H); Mr(NaOH) = 23 + 16 + 1 = 40.
Молярная масса численно равна молекулярной, но выражается в г/моль, т. е. M(NaOH) = 40 г/моль.
Используя формулу (4), определяем количество вещества NaOH, который необходим для приготовления раствора:
n(NaOH) = c • V; n(NaOH) = 0,5 моль/л • 0,3 л = 0,15 моль.
Теперь, зная молярную массу NaOH, находим массу требуемой щелочи по формуле (5):
n(NaOH) = n(NaOH) • M(NaOH);
n(NaOH) = 0,15 моль • 40 г/моль = 6г.
Следовательно, для приготовления раствора надо взять 6 г щелочи.
Мы привели лишь некоторые способы выражения состава растворов, а также несколько наиболее типичных и простых примеров расчетов. Если у аквариумистов возникнет необходимость более подробно ознакомиться с данным вопросом и рассмотреть более сложные расчеты, то следует использовать специальную литературу (например, Хомченко И. Г. Общая химия. М.: Новая Волна, 1997, с. 70—75; Хомченко И. Г. Сборник задач и упражнений по химии. М.: Высшая школа, 1989, с. 44—56),
Для характеристики воды как растворителя надо отметить такое свойство, как растворимость — способность веществ растворяться в воде. Есть вещества, которые могут растворяться в воде практически неограниченно, образуя смеси любого состава (например, этиловый спирт, серная кислота). Другие вещества, встречающиеся в аквариумной практике, обладают ограниченной растворимостью в воде. Растворимость количественно выражают через максимальную массу вещества (или объем газа), которая может содержаться в 100 г воды при данной температуре. Например, при 20C в 100 г воды может раствориться 35,9 г хлорида натрия NaCl.
Растворимость твердых веществ, как правило, увеличивается с ростом температуры. Так, при 80C в 100 г воды можно растворить уже 38,3 г хлорида натрия. Для некоторых веществ возрастание растворимости при увеличении температуры воды еще более резкое, При приготовлении растворов твердых веществ часто используют это явление: воду нагревают, растворение происходит быстрее.
Важную роль в гидрохимических процессах аквариума играют растворенные газы. В табл. 1 показана растворимость некоторых распространенных газов в воде. В отличие от твердых веществ, растворимость газов падает при увеличении температуры. В табл. 2 показано, например, как зависит растворимость кислорода в воде от температурных условий.
Аквариумисты часто сталкиваются с таким явлением: при увеличении температуры воды рыбам становится труднее дышать, они поднимаются к поверхности и заглатывают воздух. Это как раз и связано с уменьшением растворимости кислорода.
Таблица 1. Растворимость газов в 100 г воды при нормальном атмосферном давлении и температуре 20C
Газ
Химическая формула газа
Растворимость газа, мл

Азот
n2
1,5

Водород
H2
1,8

Кислород
O2
3,1

Метан
СН4
3,3

Углекислый газ
CO2
87,8

Хлор
Cl2
236


Таблица 2. Растворимость кислорода в 100 г воды при нормальном атмосферном давлений и различных температурах
Температура, оС
Растворимость кислорода, мл

0
4,9

20
3,1

40
2,3

60
2,0

80
1,8

100
1,7

О ВОДЕ И ДРУГИХ ЭЛЕКТРОЛИТАХ
(часть 2)
Еще одно свойство воды, играющее важную роль в гидрохимии аквариума, — электролитическая диссоциация, т. е. распад молекул на заряженные частицы называемые ионами. При распаде одной молекулы воды образуется два иона; катион (положительно заряженный ион) водорода и анион (отрицательно заряженный ион) гидроксид:
H2O = H+ + OH−
Данный процесс является обратимым, т. е. протекает как в прямом, так и в обратном направлениях. В результате этого обратимого процесса устанавливается равновесное состояние. При равновесии число молекул, распадающихся на ионы, равно числу молекул, образующихся из ионов.
Вещества, распадающиеся на ионы, называются электролитами. К ним относится вода. В дальнейшем мы расскажем и о других электролитах.
Важно отметить, что распаду на ионы подвергается лишь небольшая часть молекул воды (этот электролит является слабым в отличие от сильных, у которых практически все молекулы распадаются на ионы). Известно, что при температуре 22oС из 556 млн. молекул воды лишь одна находится в диссоциированном состоянии. Однако, учитывая малые размеры молекул и ионов, можно легко рассчитать, что в одном кубическом миллиметре воды содержится около 60 млрд. ионов H+ и столько же ионов ОН−. Это уже внушительное число. В связи с этим процесс диссоциации воды имеет важное значение в гидрохимических процессах.
Установлено, что в воде, а также в водных растворах различных веществ, произведение концентрации ионов водорода c(H+) (в моль/л) и концентрации гидроксид-ионов c(ОН−) есть величина постоянная. Мы будем обозначать эту величину KE и называть ионным произведением воды:
KE = c(H+) • c(ОН−) (6)
Значение КE зависит от температуры. При температуре 22оС КE = 10− 14. При переходе от чистой воды к водным растворам (в том числе и к аквариумной воде) значение КE сохраняется. Если при растворении в воде каких—либо веществ увеличивается концентрация ионов водорода c(H+), то концентрация гидроксид-ионов c(ОН−) уменьшается до такого значения, чтобы произведение оставалось постоянным. Значение постоянной КE используется в различных расчетах, связанных со свойствами аквариумной воды. С такими расчетами мы познакомимся в других разделах книги.
Кроме воды существует большое число веществ, относящихся к электролитам, т. е. диссоциирующих на ионы в водном растворе. К электролитам относятся кислоты (неорганические и органические), щелочи и соли.
При электролитической диссоциации кислот образуются ионы водорода и различные анионы (кислотные остатки), например:


HCl

=
H+
+
Cl−

Аналогично диссоциируют и некоторые органические кислоты:
СH3COOH

=
H+
+

CH3COO−

Назовем еще некоторые распространенные кислоты, с которыми может встретиться аквариумист — любитель в своей практике.
Неорганические (минеральные) кислоты:
азотная кислота
HNO3

серная кислота
H2SO4

фосфорная (оротофосфорная) кислота
H3PO4

угольная кислота
H2СO3

борная кислота
H3BO3

Органические кислоты:
щавелевая кислота
H2C2O4

муравьиная кислота
HCOOH

аминоуксусная кислота (глицин)
H2N — CH2 — COOH

Следующий тип электролитов — основания, при диссоциации которых образуются катионы металлов и гидроксид-анионы ОН‾. Важное практическое значение имеют хорошо растворимые в воде основания — щелочи: NaOH — гидроксид натрия и КОН — гидроксид калия. Вот, например, уравнение диссоциации КОН:
KOH = K+

+ OH−

К щелочам относится также водный раствор газа аммиака (иногда этот раствор называют гидроксидом аммония; медицинское название — нашатырный спирт), формулу которого записывают как NH3 • H2O или МН4ОН:
NH4OH = NH4+

+ ОН−

Наконец, еще одну группу электролитов составляют соли. При диссоциации солей образуются катионы металлов (или аммония) и анионы кислотных остатков. Например, всем хорошо известный хлорид натрия (обычная поваренная соль):
NaCl = Na+

+ Cl−

Другой пример — Fe2(SO4)3 — сульфат железа (III) (цифра в скобках указывает степень окисления железа, в которой оно входит в состав соединения):
Fe2(SO4)3 = 2Fe2+

+ 3SO42−

Чтобы ориентироваться в многообразии солей, многие из которых используются в аквариумной технике, надо знать их названия, которые даются по аниону (кислотному остатку), входящему в состав соли. Такие названия приведены в табл. 3. В этой же таблице приводятся устаревшие названия, которые не используются в современной литературе, однако применяются в торговых организациях и встречаются на упаковках химических реактивов.
Кроме обычных (так называемых средних) существуют и другие типы солей. Например, кислые соли, которые диссоциируют как соль и кислота. К таким солям относится гидрокарбонат натрия NaHCO3 (питьевая сода):
NaHCO3 = Na+

+ HCO3−

HCO3− = H+

+ CO32−







Важную роль в гидрохимии аквариума играют гидрокарбонат кальция Ca(HCO3)2 и гидрокарбонат магния Mg(HCO3)2, о которых мы будем подробно говорить в дальнейшем.
Некоторые кислоты (фосфорная и др.) образуют два типа кислых солей: K2HPO4— гидрофосфат калия и KH2PO4— дигидрофосфат калия.
Таблица 3 Названия наиболее распространенных анионов и солей
Анион
Современное название аниона
Устаревшее название аниона
Пример соли
Современное название соли

f−
Фторид
Фтористый
KF
Фторид калия

Cl−
Хлорид
Хлористый
ВаCl2
Хлорид бария

Br−
Бромид
Бромистый
KBr
Бромид калия

I−
Йодид
Йодистый
NaJ
Йодид натрия

S2−
Сульфид
Сернистый
FeS
Сульфид железа (II)

SO32−
Сульфит
Сернистокислый
Na2SO4
Сульфит натрия

SO42−
Сульфат
Сернокислый
CuSO4
Сульфат меди (II)

NO4−
Нитрит
Азотистокислый
KNO2
Нитрит калия

NO3−
Нитрат
Азотнокислый
KNO3
Нитрат калия

CN−
Цианид
Цианистый
KCN
Цианид калия

NCS−
Тиоцианат
Роданистый
KNCS
Тиоцианат калия

SiO32−
Силикат
Кремнекислый
Na2SiO3
Силикат натрия

CO32−
Карбонат
Углекислый
CaCO3
Карбонат кальция

PO43−
Фосфат
Фосфорнокислый
K3PO4
Фосфат калия

OCl−
Гипохлорит
Хлорноватистокислый
NaOCl
Гипохлорит натрия

ClO3−
Хлорат
Хлорноватокислый
KClO3
Хлорат кадия

ClO4−
Перхлорат
Хлорнокислый
KClO4
Перхлорат калия

MnO4−
Перманганат
Марганцевокислый
KMnO4
Перманганат калия

CrO42−
Хромат
Хромовокислый
Na2CrO4
Хромат натрия

Cr2O72−
Дихромат
Двухромовокислый
K2Cr2O7
Дихромат кадия

AsO43−
Арсенат
Мышьяковокислый
Na3AsO4
Арсенат натрия

MoO42−
Молибдат
Молибденовокислый
(NH4)2MoO4
Молибдат аммония

TiO32−
Титанат
Титановокислый
K2TiO3
Титанат калия

Аквариумист может встретиться с двойными солями, например, с алюмокалиевыми квасцами (сульфатом калия-алюминия) KAl(SO4)2, при диссоциации которых образуются катионы двух металлов:
KAl(SO4)2 = K+ + А13+ + 2SO42−
Наконец, надо сказать еще об одной разновидности солей. Это — кристаллогидраты, вещества, удерживающие воду в твердом состоянии. Многие читатели наверняка знакомы с таким соединением как медный купорос. Он относится к кристаллогидратам: CuSO4 • 5H2O (точка в формуле означает химическое соединение воды с солью). При растворении, вода отщепляется от сульфата меди (II), и он диссоциирует на ионы как обычная соль:
CuSO4 = Cu2+ + SO42−
При нагревании кристаллогидратов вода отщепляется от них:
CuSO4 • 5H2O
―нагревание→
CuSO4 + 5H2O;

Многие вещества (не только соли, но и некоторые кислоты) чаще встречаются в виде кристаллогидратов. При использовании этих соединений для приготовления растворов многие делают ошибку в расчетах, не учитывая воду, входящую в состав вещества. Как надо правильно делать расчёт, мы покажем на примере.
Пример. Для приготовления раствора требуется 12 г сульфата меди (II) CuSO4. Рассчитайте массу кристаллогидрата CuSO4 • 5H2O, который может заменить требуемый сульфат меди (II).
Решение. Рассчитываем молярную массу сульфата меди (II):
Mr(CuSO4) = Ar(Cu) + Ar(S) + 4Ar(O); Mr(CuSO4) = 64 + 32 + 4 • 16= 160.
Молярная мacca равна: M(CuSO4) = 160 г/моль. Для кристаллогидрата CuSO4 • 5H2O(кр) получаем:
Mr(кр) = Mr(CuSO4) + 5 • Mr(H2O); Mr(кр) = 160 + 5 • 18 = 250.
Следовательно, молярная масса кристаллогидрата будет равна: Mr(кр) = 250 г/моль.
Массу требуемого кристаллогидрата можно рассчитать, используя соотношение:
m(кр)
=
M(кр)

m(CuSO4)

M(CuSO4)

Отсюда получаем:

m(кр) =
M(кр) •m(CuSO4)
;




M(CuSO4)




m(кр) =
12 г • 250 г/моль
= 18,75г.




160 г/моль



Таким образом, для приготовления раствора вместо 12 г CuSO4 необходимо взять 18,75 г CuSO4 • 5H2O. При этом надо учесть, что воды в качестве растворителя надо взять меньше на 18,75 г — 12 г = 6,75 г.
При использовании различных электролитов в качестве добавок в аквариумную воду (также при изготовлении лечебных растворов, удобрений и других растворов) необходимо знать растворимость веществ в воде. Растворимость можно определить по справочникам, а в простейших случаях удобно пользоваться таблицей растворимости солей и оснований в воде (табл. 4).
Анализируя табл. 4, следует обратить внимание на вещества, напротив которых стоит символ н (практически нерастворимые). Не следует понимать, что эти вещества вообще не растворяются в воде. Рассмотрим, например, сульфат свинца PbSO4, относящийся к группе малорастворимых соединений. Действительно, если вы возьмете достаточно концентрированные растворы хорошо растворимых солей Pb(NO3)2 и Na2SO4 и сольете вместе, то образуется осадок, состоящий из сульфата свинца:
Pb(NO3)2 + Na2SO4 = PbSO4↓ + 2NaNO3
Однако небольшая часть PbSO4 остается в растворе: в 100 мл воды может растворяться 4,55 мг этой соли — достаточно, чтобы оказывать существенное влияние на обитателей аквариума и гидрохимические процессы в нем.
Таблица 4 Растворимость солей и оснований в воде

Анионы

Катионы
OH‾
F‾
Cl‾
Br‾
J‾
S‾
SO32‾‾
SO42‾‾
NO32‾‾
PO43‾
CO32‾‾
SiO32‾‾
CH3COO‾‾

Ag+
-
р
н
н
н
н
н
м
р
н
н
н
р

Al3+
н
м
р
р
р
-
-
р
р
н
-
н
м

Ва2+
р
м
р
р
р
р
н
н
р
н
н
н
р

Са2+
м
н
р
р
р
м
н
м
р
н
н
н
р

Cd2+
н
р
р
р
р
н
н
р
р
н
н
н
р

Co2+, Ni2+
н
р
р
р
р
н
н
р
р
н
н
н
р

Cr3+
н
н
р
р
р
-
-
р
р
н
-
н
р

Cu2+
н
н
р
р
р
н
н
р
р
н
н
н
р

Fe2+
н
н
р
р
р
н
н
р
р
н
н
н
р

Fe3+
н
н
р
р
р
-
-
р
р
н
н
н
р

Hg2+
-
-
р
м
н
н
н
р
р
н
н
-
р

Mg2+
м
н
р
р
р
р
н
р
р
н
н
н
р

Mn2+
н
м
р
р
р
н
н
р
р
н
н
н
р

Na+, К+
р
р
р
р
р
р
р
р
р
р
р
р
р

NH4+
-
р
р
р
р
-
р
р
р
р
р
-
р

Pb2+
н
н
м
м
н
н
н
н
р
н
н
н
р

Sn2+
н
р
р
р
р
н
-
р
-
н
-
-
р

Zn2+
н
м
р
р
р
н
н
р
р
н
н
н
р

Примечание: р — растворимое вещество (в 100 г воды более 1 г вещества), м — мало растворимое вещество (в 100 г воды растворяется от 0,1 г до 1 г вещества), н — практически нерастворимое вещество (в 100 г воды растворяется менее 0,1 г вещества). Символ - означает, что вещество не существует или разлагается водой.
Растворяясь в очень небольшой степени, малорастворимые (и практически нерастворимые) вещества быстро образуют насыщенный раствор и практически полностью диссоциируют на ионы. Для характеристики растворимости таких веществ используется величина, называемая произведением растворимости (ПР), которая представляет собой произведение концентраций ионов (в моль/л) в насыщенном растворе данной соли. Например, для хлорида свинца РbС12 (РbС12 = Рb2+ + 2Cl‾‾) произведение растворимости запишется так:
ПР(РbCl2) = c(Рb2+, нас) • c(Cl‾‾, нас)
где c(Рb2+, нас) и c(Cl‾‾, нас) — концентрации ионов в моль/л в насыщенном растворе РbCl2.
Оказывается, что при данной температуре произведение растворимости малорастворимого электролита есть постоянная величина. Значения ПР ряда веществ, соответствующие температурным условиям аквариума (20—25C), приведены в табл. 5.
Таблица 5 Произведение растворимости и растворимость солей и оснований в воде
Формула вещества
Название вещества
ПР
Растворимость в мг в 100г воды

AgCl
Хлорид серебра
1,6 • 10‾ 10
0,186

Аl(ОН)3
Гидроксид алюминия
4,9 • 10‾ 33
2,26 • 10‾ 5

BaSO4
Сульфат бария
1,1 • 10‾ 10
0,233

Cu(ОН)2
Гидроксид меди (II)
5,6 • 10‾ 20
0,00234

CuS
Сульфид меди (II)
8,5 • 10‾ 45
8,8 • 10‾ 19

Fe(OH)2
Гидроксид железа (II)
6,3 • 10‾ 16
0,045

Fe(OH)3
Гидроксид железа (III)
3,8 • 10‾ 39
2,03 • 10‾ 5

FeS
Сульфид железа (II)
3,8 • 10‾ 19
5,36 • 10‾ 6

Mg(OH)2
Гидроксид магния
5,0 • 10‾ 12
0,642

MgCO3
Карбонат магния
1,0 • 10‾ 5
27,0

PbCl2
Хлорид свинца
2,4 • 10‾ 4
1080,0

PbSO4
Сульфат свинца
2,2 • 10‾ 8
4,55

CaSO4
Сульфат кальция
6,3 • 10‾ 5
135,0

СаСOз
Карбонат кальция
4,8 • 10‾ 9
0,694

С помощью произведения растворимости решается такой вопрос, как возможность образования осадка, Например, если в растворе создать концентрацию ионов Рb2+ и Cl‾ такую, что будет выполняться условие c(Рb2+, нас.) • c(Cl‾, нас.) > ПР(РbCl2), то соль РbCl2 будет выпадать в осадок. Если c(Рb2+, нас.) • c(Cl‾, нас.,) < ПР(РbCl2), то осадок соли выпадать не будет.
Рассмотрим еще один пример из аквариумной практики. Для хорошего роста некоторых водных растений надо создать в аквариумной воде концентрацию ионов железа 0,2 мг/л, что соответствует молярной концентрации ионов 3,57 • 10‾ 7 моль/л. Каким соединением железа воспользоваться для этого: сульфатом железа (II) FeSO4 или сульфатом железа (III) Fe2(SO4)3? Здесь надо учитывать возможность образования в сильно разбавленном растворе гидроксидов Fe(OH)2 и Fe(ОН)з и выпадения их в осадок.
В воде, как мы уже отмечали, справедливо следующее соотношение (ионное произведение воды):
c(H+) • c(ОН‾) = 10‾ 14.
причем, из уравнения диссоциации воды H2O = H+ + ОН‾ следует, что c(H+) = c(ОН‾). Получаем c(ОН‾) = (10‾ 14)1/2 = 10‾ 7 моль/л — такова концентрация гидроксид-ионов в воде.
Теперь предположим, что мы внесли в воду FeSO4 в таком количестве, что концентрация ионов Fe2+ стала равной 3,57 • 10‾ 7 моль/л (что необходимо для подкормки растений). Найдем произведение:
c(Fe2+) • [c(OH‾)]2 = 3,57 • 10‾ 6 • (10‾ 7)2 = 3,57 • 10‾ 20 < ПР [Fe(ОН)2],
следовательно, гидроксид не будет выпадать в осадок. Если вместо FeSO4 воспользоваться сульфатом железа (III) Fe2(SO4)3, то для Fe(OH)3 мы получим:
c(Fe2+) • [c(OH‾)]3 = 3,57 • 10‾ 6 • (10‾ 7)3 = 3,57 • 10‾ 27 > ПР[Fe(ОН)3],
т. е. будет выпадать в осадок гидроксид Fe(OH)3, и требуемая концентрация ионов железа в растворе не может быть достигнута. Таким образом, на основании представления о произведении растворимости мы смогли сделать вывод о том, какую соль железа лучше использовать для удобрения аквариумных растений.
ВОДА И ЖИВЫЕ КЛЕТКИ
При содержании рыб и растений в аквариумах часто встает вопрос о солености воды. Почему одним нужна соленая вода, а другим — пресная? Почему многие растения плохо растут в подсоленной воде? Кадим образом изменить соленость воды? Правильное решение этих вопросов определят оптимальные условия жизнедеятельности обитателей аквариума, поскольку обмен веществ между организмом и окружающей средой тесно связан с химическим составом воды.
Синтез веществ, процессы дыхания, разложения сложных соединений проходят в клетках живых организмов. В процессе жизнедеятельности постоянно расходуются одни вещества и образуются другие. Часть вновь образовавшихся молекул остается в клетке, часть транспортируется в другие клетки или выводится в окружающую среду. Для обеспечения процесса жизнедеятельности необходим постоянный подвод исходных составляющих и отвод из клетки побочных продуктов, образовавшихся в ходе биохимических реакций.
Транспорт молекул осуществляется по специально организованным передающим тканям. Перед тем, как попасть в клетку или выйти из нее, все вещества должны пройти через клеточную мембрану, отделяющую клетку от внешней среды. Процессы обмена веществ на мембранах тесно связаны с химическим составом воды. Содержание различных солей оказывает влияние на то, какие вещества и в каких количествах будут поступать в клетку или выходить из нее. Продукты, необходимые для жизнедеятельности организма, обычно транспортируются через мембрану в виде заряженных ионов. Транспорт может осуществляться активно — с использованием богатых энергией соединений или пассивно, за счет собственной кинетической энергии ионов. Пассивный транспорт — диффузия различных ионов через мембрану — осуществляется с разной скоростью. Относительная способность разных ионов диффундировать через мембрану определяет коэффициент проницаемости Р. Легче других проникает через мембраны ион К+, поэтому значение Р для К+ условно принимают за 1,0. У водоросли Nitella коэффициент проницаемости для Na+ и Cl‾ равны 0,18 и 0,033 соответственно. Скорость проникновения ионов через мембрану зависит также от разности концентраций данного иона по обе стороны мембраны. Чем больше разность концентраций, тем больше ионов диффундирует в сторону меньшего их содержания. Кроме диффузии, идущей за счет разницы концентраций, существует активный транспорт ионов, при котором движение осуществляется за счет разности электрохимических потенциалов через специальные участки мембраны. Это движение может осуществляться и от меньшей концентрации к большей. Движущей силой процесса в этом случае является запас энергии в форме молекул АТФ.
Упрощенно структура живой клетки выглядит следующим образом: внутри клеточной стенки (сравнительно жесткого образования) располагается протопласт (живая часть клетки), в котором заключены все клеточные организмы, находящиеся в сложном растворе — цитоплазме. Клеточная стенка имеет избирательную проницаемость для различных ионов, то есть различные вещества проникают сквозь мембрану с разными скоростями. Это определяется их различной растворимостью отдельных составляющих мембраны и различными скоростями перекачивания при активном транспорте. В результате образуется неравномерное распределение ряда веществ по обе стороны мембраны. Клетки растений активно накачивают калий, а близкий к нему натрий, наоборот, выталкивается в окружающую среду. Из-за более высоких концентраций некоторых ионов внутри клетки создается осмотическое (диффузное) давление, характеризующее стремление раствора, отторгнутого мембраной, к снижению концентрации (разбавлению). Осмотическое давление может достичь десятков атмосфер. Это давление создает напряженное состояние клеточной оболочки. Напряжение мембраны зависит также от внешнего раствора. В зависимости от отношения осмотического давления внешнего раствора к давлению в клетке растворы подразделяются на три группы. Изотонические — в них разница давлений невелика (менее 0,5—1,0 атм); гипертонические — их давление выше, чем в клетке; противоположные им — гипотонические. Если клетка находится в гипертоническом растворе, то из нее происходит откачка воды, что приводит к уменьшению размера клетки и сжатию мембраны. Из гипотонических растворов вода поступает в клетки, что приводит к их набуханию (вплоть до разрыва мембраны) и потере части активных веществ.
Совокупность процессов регулирования осмотического давления жидкостей организма носит название осморегуляция. Этот процесс обнаружен у большинства организмов. У пресноводных рыб вода вместе с содержащимися в ней солями активно поступает в клетки через поверхность тела и жабры и выводится из организма через почки. У солоноводных рыб попавшая в организм вода выводится через кожные покровы, a NaCl выводится главным образом через жабры за счет специальных желез. Водные растения и пресноводные рыбы удовлетворяют потребность организма в ионах, поглощая их непосредственно из воды. Если она не содержит необходимые элементы, то при нормальном соотношении осмотических давлений происходит изменение содержания отдельных элементов, то есть изменение отношения ионов в организме. В ряде случаев это приводит к нарушению биохимических процессов.
В ходе экспериментов с пресноводными рыбами обнаружено, что они неплохо переносят изотонические растворы, полученные разбавлением морской воды, в то время как гипотонические растворы одной из солей — калия, магния, натрия или кальция — действовали смертельно. Был получен ряд токсичности ионов основных металлов:
Na+ < Ca2+, Mg2+ < K+
Опыты показали, что воздействие на рыб оказывает содержание Na+ в крови. При повышении концентрации Na+ в воде соответственно увеличивается его содержание в крови, а содержание К+ уменьшается. При повышении концентрации калия происходит обогащение организма натрием. Так что калий оказывает косвенное токсическое воздействие. Обогащение рыб натрием дифференцировано в зависимости от пола рыбы. Кровь самок быстрее обогащается натрием (возможно за счет реакции яичников).
При поглощении Na+ требуется большое количество энергии. При ассимиляции Na+ организмом происходит его замещение на NH4+. Аммоний может выделяться организмом из органических азотсодержащих соединений. Таким образом, повышенное потребление натрия приводит к нарушению белкового обмена. У растений повышение концентрации натрия приводит к блокаде поступления ионов калия через мембраны клеток. Растение может испытывать калийное голодание даже при достаточно высоком абсолютном содержании калия.
Анионы также имеют различное воздействие на обитателей. Так, нитраты для рыб значительно более ядовиты, чем хлориды. Для растений наиболее токсичны хлорид-ионы Cl‾, затем следуют сульфат- и карбонат-ионы (SO42‾ и СO32‾).
Кроме осмотического давления и абсолютного содержания того или иного иона в воде большое физиологическое значение имеет соотношение ионов, растворенных в воде. Большинство природных вод имеет приблизительно равное суммарное содержание одновалентных и двухвалентных ионов. К такому соотношению приспособлены процессы жизнедеятельности водных организмов. Конечно, в различных регионах земного шара состав воды различен, но организмы имеют возможность приспосабливаться к некоторым изменениям химического состава.
В основном, требования к соотношению ионов необходимо учитывать в условиях аквариума, хотя отклонение от соотношения ионов 1:1 может превысить 100%. Кроме соотношения одно- и двухвалентных ионов имеет значение и соотношение внутри этих групп. В первую очередь это относится к четырем ионам: K+ и Na+, Mg2+ и Са2+. Эти ионы попарно близки по химическим свойствам, и поэтому относительно транспорта через мембраны клеток являются антагонистами. Повышение относительной концентрации одного из ионов приводит к снижению поступления в клетку другого. Практическое применение сказанного выше означает, что при приготовлении воды необходимо пользоваться всеми необходимыми элементами.
Итак, аквариумисту важно знать еще два параметра золы; общее солесодержание и соотношение основных ионов. Общее солесодержание определяет осмотическое давление, но эту величину трудно измерить практически. Поэтому удобнее для определения общего содержания растворенных солей использовать свойство водных растворов проводить электрический ток. Чем больше в воде диссоциированных молекул, тем выше ее электропроводность. Единицей измерения служат сименс (См) или микросименс (мкСм). Чаще всего ее выражают в виде удельной электропроводности (отнесенной к единице длины проводника) К в мкСм/см. Значение электропроводности может быть легко измерено в домашних или полевых условиях, поэтому она получила широкое распространение в литературе по аквариумистике. Конечно, она не дает информации о соотношении ионов между собой, но если считать, что оно выдерживается в приемлемых границах для большинства природных вод или учитывается при искусственном составлении, то этой величиной можно успешно пользоваться. В табл. 15 приведены значения электропроводности воды из некоторых тропических природных водоемов. Как правило, чем выше жесткость воды, тем больше ее удельная электропроводность.
Таблица15 Жесткость и электропроводность воды в некоторых природных водоемах.

Название реки
Регион
Общая жесткость, dGH
Удельная электропроводность, мкСм/см

Верде
Мексика, Северная Америка
53
1680

Чико
Панама, Центральная Америка
6,7
275

Нгон
Габон, Африка
12
360

Значением электропроводности воды можно успешно пользоваться при внесении в нее различных солей. Для этого требуется приготовить маточный раствор, содержащий необходимые элементы в сбалансированном количестве и вводить его в воду до получения заданной солености, контролируя ее по значению λ. Эту методику можно использовать при увеличении солености дистиллированной воды. Следует помнить, что подсоливание воды только одним из компонентов — ошибка, которая может привести к нежелательным последствиям.
ФИЛЬТРАЦИЯ И РАЗЛИЧНЫЕ СПОСОБЫ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ В АКВАРИУМЕ
В аквариуме происходит постоянное накопление органических остатков (не съеденный корм, экскременты рыб и моллюсков, погибшие обитатели). Под действием кислорода и микроорганизмов эти остатки разлагаются до простых минеральных соединений (СО2, NH3, РО43‾, SO42‾, NO3‾ и других). В природных водоемах концентрация минеральных веществ в воде достаточно стабильна, поскольку часть их ассимилируется растениями, а другая часть выносится вместе с потоком воды. В аквариуме плотность посадки рыб значительно превышает природную. Поэтому весь органический материал в объеме аквариума не может быть преобразован в неорганические вещества. При недостатке и при отсутствии растений происходит постепенное накопление минеральных веществ в воде. При достижении определенной концентрации начинается токсическое воздействие продуктов обмена на обитателей аквариума. Не успевающие разлагаться органические остатки образуют ил, который делает воду мутной, закрывает грунт, препятствуя кислородному обмену.
Для удаления излишков минеральных и органических остатков из аквариума проводится чистка и подмена воды, о чем говорилось выше, а также применяется фильтрация аквариумной воды. Главное назначение фильтрации — это удаление из воды нежелательных составляющих (органических и минеральных частиц, молекул, ионов, микроорганизмов). Аквариумные фильтры обычно бывают двух типов: механические и биологические. Кроме фильтрации, существует еще несколько методов очистки воды: химический, флотация, озонирование и ультрафиолетовое облучение.
Механическая фильтрация
Механическая очистка заключается в удалении из воды взвешенных частиц и водорослей за счет пропускания воды через фильтрующий элемент. Удаление частиц происходит при просачивании воды через узкие каналы фильтрующего материала (гравия, сетки, волокна и т. д.). Эффективность очистки возрастает при уменьшении размера частиц фильтрующего материала или диаметра проходных каналов. Однако уменьшение каналов возможно лишь до определенных пределов, поскольку при этом начинает возрастать сопротивление потоку жидкости и снижается производительность фильтра. В процессе фильтрации взвешенные частицы начинают оседать в самом начале фильтра, уменьшая диаметр проходных каналов. Это приводит к более полной очистке воды в данной зоне, тогда как последующие слои фильтрующего элемента работают менее эффективно. Поэтому не нужна толщина фильтрующего слоя более 5 см. Целесообразно применять фильтрующие элементы с различной величиной проходных каналов. Вода, последовательно проходя через слои со все уменьшающимися каналами, будет равномерно очищаться во всем объеме фильтра.
В зависимости от скорости прохождения воды, фильтры делятся на быстрые и медленные. Источником движения воды в медленных фильтрах обычно является эрлифт. Принцип его работы состоит в следующем: поток воздуха от компрессора в виде мелких пузырьков смешивается с водой; газовоздушная смесь поднимается в узком вертикальном канале (трубке) выше уровня воды в аквариуме. Таким образом, через трубку прокачивается вода, а фильтрующий элемент может быть установлен на входе в трубку или при выходе из нее.
В быстрых фильтрах источником движения воды служат механические (чаще всего центробежные) водяные насосы (помпы). Они создают высокий напор воды, обеспечивая тем самым более высокую скорость циркуляции ее через фильтрующий элемент.
На поверхности фильтрующего элемента поселяются бактерии, преобразующие органические соединения до минеральных. Однако, поскольку объем механических фильтров невелик, полного разложения органических веществ в них не происходит. Используя механические фильтры, аквариумисты часто допускают одну ошибку. При работе фильтра живущие в нем микроорганизмы окисляют органические соединения, для этого им необходим постоянный приток кислорода. Некоторые аквариумисты в ночное время,
избегая шума или следуя инструкции по эксплуатации компрессора, отключают его, прекращая подачу кислорода в фильтр. При отсутствии кислорода вместо почти безвредных веществ начинают вырабатываться высокотоксичные для рыб сероводород H2S, метан CH4, аммиак NH3. За время остановки фильтра эти вещества накапливаются в нем и при повторном включении выбрасываются в воду сразу в большом количестве. Это может привести к массовому отравлению рыб или травмам, связанным со скачком параметров воды (прежде всего рН). Поэтому аквариумистам не следует отключать работающие механические фильтры, не проводя при этом промывки или замены фильтрующего элемента.
Рас. 26. Внутренний механический фильтр: 1 — корпус, 2 — входное отверстие, 3 — выходное отверстие, 4 — ограничительные решетки, 5 — фильтрующий элемент, 6 — эрлифт
При работе фильтра в нем происходит накопление отфильтрованного материала. Необходимо периодически проводить промывку фильтрующего элемента. Дать точную рекомендацию о частоте промывок невозможно, поскольку это зависит от объема аквариума, количества рыб, количества и скорости роста растений, объема и конструкции фильтра. Однако во всех случаях через 1—2 недели непрерывной его работы необходима промывка. Уточнить эти сроки можно только на практике.
Теперь остановимся на конструктивных элементах и технологических особенностях фильтров. В зависимости от места установки различают наружные и внутренние фильтры.
Принципиальная конструкция внутреннего механического фильтра представлена на рис. 26. Фильтр состоит из корпуса (1), в котором имеются два отверстия: одно большое входное (2) и другое выходное (3) меньшего размера. В выходной канал можно опустить распылитель, соединенный с компрессором, создав тем самым простейший эрлифт. В этом случае диаметр входного канала должен быть чуть больше диаметра распылителя. Если предполагается присоединить фильтр к помпе, то конструкция выходного отверстия должна соответствовать диаметру соединительного шланга и обеспечивать надежное и герметичное соединение с помпой. Внутренняя полость фильтра между ограничительными решетками (4) заполняется фильтрующим элементом (5). Фильтрующий элемент должен полностью заполнять эту полость, в противном случае могут образовываться незаполненные каналы, через которые устремится основной поток воды.
В качестве фильтрующего элемента используется крупный песок, гравий, пористый пенопласт, водостойкий поролон, синтетические волокна или вата. Главное — химическая инертность применяемого материала, устойчивость в воде, возможность его промывки и замены.
Наружные фильтры по действию ничем не отличаются от внутренних. Их преимущества перед внутренними состоят в том, что они имеют больший объем, не загромождают аквариум, в них легче проводить замену или промывку фильтрующего элемента. При эксплуатации наружного фильтра важно не допустить его переполнения аквариумной водой. Поэтому, обычно, вода перекачивается из фильтра в аквариум, а возвращается самотеком через водослив или через заполненную водой U-образную трубку. На рис. 27 приведены варианты конструкций и способы крепления наружных фильтров.
Биологические фильтры (биофильтры)
В биологических фильтрах осуществляется биологическая очистка воды: посредством бактерий и других организмов происходит переработка продуктов жизнедеятельности гидробионтов до неорганических соединений и удаление последних из воды биологическими методами.
Рис. 27. Наружный механический фильтр: 1 — U-образная трубка для подачи воды в фильтр, 2 — эрлифт, 3 — фильтрующий элемент
Разложение органических молекул и преобразование их в минеральные соединения происходят под действием микроорганизмов. Эти микроорганизмы поселяются на развитой поверхности фильтрующего материала, Конечно, эти бактерии живут в толще воды, но там их значительно меньше. Например, в объеме гравийного фильтра количество аммонифицирующих бактерий, превращающих органические вещества в аммиак, составляет 105 штук на 1 см3, а нитрифицирующих (превращающих аммиак в нитриты) — 106 штук на 1 см3. В толще воды (в 5 см от поверхности) их количество примерно в 10 раз меньше.
В результате разложения органических веществ бактериями образуются углекислый газ, нитраты, фосфаты и сульфаты. СО2 может выводиться из воды в атмосферу, а на свету поглощаться растениями. Анионы (NO3‾‾, PO43‾‾ и SO42‾) остаются в воде. Если аквариум достаточно плотно засажен растениями, эти продукты обмена могут быть полностью ассимилированы ими. При недостатке растений или их полном отсутствии происходит постепенное накопление этих продуктов распада в аквариумной воде. Чтобы поддерживать ионный состав воды в допустимых пределах, можно использовать химическую очистку (о ней будет рассказано) или проводить частичную замену воды. Можно рекомендовать аквариумистам установить промежуточные емкости, заполненные быстрорастущими плавающими растениями, которые поглощают излишки минеральных веществ, и пропускать воду через эти емкости.
Скорость накопления отходов в аквариуме и, соответственно, нагрузка на биофильтр, определяется видами рыб и других животных, плотностью посадки рыб и растений, частотой подмены воды и чистки аквариума. От всех этих факторов зависит объем и устройство фильтра.
Как показывает практика, объем биофильтра, полностью восстанавливающего состав воды, приблизительно равен объему аквариума. Однако, применение различных приемов, повышающих эффективность работы фильтра, позволяет уменьшить его объем в 2— 3 раза.
Полная схема биологического фильтра представлена на рис. 28. Вода из аквариума поступает в механический фильтр (1), объем которого составляет приблизительно 5% объема биофильтра. Здесь удаляется значительное количество крупных органических частиц. Затем вода поступает в аэратор (2), где насыщается кислородом из воздуха (приблизительно 20% объема), после чего в фильтрующий элемент (3), где происходят процессы, конечными продуктами которых является образование СО2, NO3‾‾, РО43‾‾, SO42‾‾ других частиц. Этот фильтрующий элемент занимает приблизительно 50% объема. При необходимости после него следует сосуд, где происходит ассимиляция минеральных веществ растениями или химическая очистка воды. Такой биофильтр, по объему равный объему аквариума, может работать достаточно долгое время, но его необходимо постоянно обслуживать: промывать механический фильтр, удалять разросшиеся растения или регенерировать систему химической очистки.
Рас. 28. Биологический фильтр: 1 — механический фильтр, 2 — аэратор, 3 — биофильтрующий элемент, 4 — отделение с растениями.
Устройство механического фильтра уже известно. Аэратор — это свободная часть сосуда, в котором расположены распылители (один на 50 см2 площади дна). Устройство биофильтрующего элемента аналогично механическому, но стой разницей, что промывка проводится очень редко. Важную роль играет размер частиц, используемых в фильтрующем материале: от него зависит рабочая площадь, заселенная бактериями. Допустим, что в 1 см3 поместили кусочек гравия шарообразной формы диаметром 10 мм. Однако, в том же объеме можно разместить 8 частиц диаметром 5 мм. Простейший расчет показывает, что во втором случае площадь поверхности частиц вдвое больше. Но слишком мелкий фильтрующий материал быстро засоряется. Поэтому на практике используется гравий с размером зерен 2—5 мм. При создании фильтра следует учитывать, что период созревания культуры бактерий длится 2—4 недели, поэтому для ускорения этого процесса рекомендуется взять немного грунта с уже установившейся культурой из другого фильтра.
Рис. 29. Аквариум-биофильтр с фальшдном: 1 — фальшдно, 2 —грунт, 3 — эрлифт
Известны также и другие способы устройства биофильтров. Например, роль биофильтра может играть сам аквариум, устройство которого интенсифицирует процессы разложения и удаления продуктов обмена. Примером такого сосуда служит сосуд с фальшдном (рис. 29). Это дно обычно изготовляют из пластмассы, просверлив в ней многочисленные мелкие отверстия. При этом направление движения воды принципиального значения не имеет. Культура микроорганизмов образуется в грунте и активно перерабатывает принудительно проходящий через него поток воды. Важным моментом является обеспечение равномерного по всей площади дна тока воды через слой грунта.
Еще один вариант биофильтра приведен на рис. 30. Здесь фильтрующий элемент собран в кассеты, при этом слой фильтрующего материала невелик, а его поверхность сильно развита, фильтр такой конструкции будет оказывать очень малое сопротивление потоку жидкости. Принцип работы состоит в следующем: по трубке (1) вода из аквариума попадает в биофильтр (2) и проходит через кассеты с фильтрующим материалом (3).
Стенки кассет имеют отверстия или делаются решетчатыми для обеспечения циркуляции воды. Из центра кассет очищенная вода по эрлифту (4) подается в общий коллектор (5) и далее в аквариум. В центре кассеты помещается распылитель, который обеспечивает ток воды и насыщает ее кислородом.
Рис. 30. Кассетный биофильтр: 1 — трубка для подачи воды, 2 — биофильтр, 3 — кассеты с фильтрующим материалом, 4 — распылители, 5 — эрлифт, 6 – коллектор
Химическая фильтрация воды
Химическая очистка является специфичным видом, поскольку удаляет из воды определенные соединения, для которых предназначен применяемый реагент. Системы химической очистки применяются, например, при подготовке водопроводной воды и удалении хлора (о чем говорилось выше). Для действующих аквариумов особый интерес представляет разновидность химической очистки воды, связанная с фильтрацией ее через активированный уголь, ионообменные смолы или некоторые другие вещества.
Угольные фильтры применяют в основном для обесцвечивания воды и удаления нитратов, фенолов, хлора, пестицидов и некоторых других веществ. Большая поглотительная способность активированного угля обусловлена пористой поверхностью. Например, истинная поверхность 1 г активированного угля высокого качества составляет 200—500 м2. 100 г активированного угля могут извлечь из воды до 55 г растворенных веществ. На адсорбционную способность оказывают влияние различные факторы: рН и температура воды, скорость течения воды, концентрация веществ, размер частиц адсорбента и его качество.
Процесс очистки в угольном фильтре можно условно разделить на два этапа. На первом иногда происходит адсорбция органических молекул и неорганических ионов на частицах угля, на втором этапе — разложение некоторых органических соединений до минеральных. Так сочетаются процессы адсорбции и биологической очистки воды.
Активированный уголь по причине своей высокой поглотительной способности быстро засоряется, начинает работать как простой механический фильтр и нуждается в чистке. Для восстановления этого фильтра надо прокипятить активированный уголь в дистиллированной воде в течение часа, сменив воду дважды. Из-за трудоемкости восстановления адсорбционной способности угля в домашних условиях и отсутствия выпускаемых промышленностью фильтров, они не получили широкого распространения у аквариумистов нашей страны. В ряде случаев применение фильтров с активированным углем является необходимостью, например, при содержании морского аквариума или разведении рыб, очень чувствительных к чистоте воды. Во всех случаях следует обращать внимание на качество угля.
В аквариумных фильтрах могут быть применены ионообменные смолы (катиониты и аниониты), о которых рассказывалось в главе, посвященной умягчению воды. Для удаления катионов, например, нежелательных ионов аммония (NH4+), можно использовать катиониты КУ-2, КУ-23. Однако надо помнить, что наряду с этими катионами будут удаляться и другие, например Са2+, Mg2+, K+ и т. д.
При помощи ионообменных смол (анионитов), например, АВ-17, можно удалять анионы NO2‾‾, NO3‾‾, РО43‾‾, SO42‾‾ и др. Подготовка катионитов и анионитов к использованию в фильтрах аналогична той, которая применяется перед опреснением воды, однако вместо растворов соляной кислоты и щелочи здесь следует использовать 5-10%-ный раствор хлорида натрия NaCl для обработки смол обоих типов.
Недостатком смол является их быстрое загрязнение органическими веществами. Поэтому для обеспечения нормальной работы ионообменного фильтра вода предварительно должна пройти через механический, а еще лучше и через биологический фильтры.
В качестве наполнителей фильтров, которые могут осуществлять химическую очистку воды, следует назвать верховой торф. Торфяные фильтры используются в тех случаях, когда надо получить мягкую и кислую воду и поддерживать ее в таком состоянии. С использованием торфяного наполнителя (периодически заменяя его на свежий) можно в течение 2— 3 дней воду очень высокой жесткости (20 dGH) превратить в мягкую (менее 4 dGH).
Очистка воды флотацией
Флотация — удаление нежелательных примесей из воды вместе с образующейся пеной. Этот метод, хорошо известный в горнообогатительной промышленности, был успешно применен в аквариумной практике.
Сущность метода основана на способности многих веществ адсорбироваться на поверхности пузырьков газа, проходящих через жидкость. Пузырьки газа поднимаются к поверхности жидкости, образуя пену, в которой концентрируются нежелательные примеси. Пена вместе с примесями удаляется и таким образом происходит очистка воды.
На рис. 31 представлена схема простейшего флотатора. Принцип его работы состоит в следующем. Вода из аквариума через механический фильтр непрерывно поступает во флотатор. Воздух из компрессора подается в распылитель (1), после чего в виде большого количества мелких пузырьков поднимается к поверхности воды. На поверхности пузырьков происходит адсорбция, главным образом, органических веществ. На поверхности флотатора образуется пена, которая задерживается пеноуловителем (2) и выносится в емкость для сбора загрязнений. Очищенная вода подается в аквариум или другие очистительные устройства. Флотационную очистку хорошо проводить перед ее биологической фильтрацией.
Рис. 31. Фильтр для очистки, воды; 1 — распылитель, 2 — пена
Озонирование воды
Озон О3 — сильнодействующее дезинфицирующее и окисляющее вещество. Озон нашел применение в аквариумной практике для очистки воды.
Получают озон в специальных приборах — озонаторах. Собрать озонатор аквариумист может самостоятельно, например, воспользовавшись консультациями авторов В. Мигулина (журнал Рыбоводство, 1985, № 3, с. 42 — 44) и Е. Овсянникова (журнал Рыбоводство и рыболовство, 1980, № 7, с. 29 и 1982, № 3, с. 32). Эти озонаторы состоят из генератора на радиолампах или полупроводниковых приборах и газоразрядной трубки, из которой газ поступает в емкость для обеззараживания воды.
Озон за короткий промежуток времени уничтожает в воде бактерии, окисляет растворенные органические вещества и в меньшей степени неорганические ионы (соединения серы HS, S2, азота NH4+, NH3, NO2, углеводороды).
Существенное преимущество озонирования состоит в том, что озон не оставляет в воде вредных веществ после обработки. Следы этого газа, токсичного для гидробионтов, удаляются через непродолжительное время. Установлено, например, что водоросли погибают при концентрации О3 вводе 0,5—1,0 мг/л; дафнии и циклопы — при концентрации около 2 мг/л.
Озонирование воды следует проводить не в аквариуме, а в отдельном сосуде, чтобы избежать повреждения рыб. Воду из этого сосуда следует подавать в аквариум через угольный фильтр, с помощью которого удаляют следы растворенного озона, предупреждая их попадание к рыбам.
Озонирование воды особенно эффективно, если оно сочетается с другими методами очистки воды. Например, можно озонировать воду после флотаторов или биологических фильтров.
Обеззараживание воды ультрафиолетовым излучением
Обработка воды ультрафиолетовыми лучами позволяет проводить ее дезинфекцию: уничтожаются различные нежелательные микроорганизмы, которые развиваются в большом количестве при содержании в замкнутой системе аквариума большого числа рыб. Этим способом можно освободить воду от бактерий, вирусов, спор грибков (сапролегнии и др.) и некоторых простейших.
Источником ультрафиолетового излучения могут служить специальные лампы (например, типа БУФ), которые похожи на обычные люминесцентные лампы, но без слоя люминофора. В дезинфицирующих устройствах вода должна протекать по стеклянной трубке, расположенной вдоль лампы. Скорость подачи воды должна быть не очень высокой.
Наибольшего эффекта облучение в ультрафиолетовой области света достигает при совмещении с другими видами очистки воды, в частности с биофильтрацией.
НУЖНА ЛИ МЯГКАЯ ВОДА?
Всем хорошо известно, что если в воду поместить кусочек мыла и размешать, то образуется пена. В воде из различных источников этот процесс происходит по-разному. Иногда образование пены происходит очень быстро, она обильна и удерживается долго. Такая вода называется мягкой. Бывает, что пена образуется с большим трудом и только при внесении большого количества мыла. Это происходит в так называемой жесткой воде. Термины мягкая и жесткая вода отражают свойство воды, играющее важную роль в аквариумном рыбоводстве. Это жесткость воды.
Жесткость воды обусловлена растворенными в ней солями кальция и магния: чем больше в воде растворенных соединений, тем она жестче. Самая мягкая вода вообще не содержит растворенных солей кальция и магния. В природных водоемах такая вода не встречается, Получить воду, практически не содержащую солей, можно различными способами, например, путем перегонки, или дистилляции. Этот метод основан на следующем: вода при кипячении испаряется, пары улавливаются, конденсируются (т. е. вновь превращаются в жидкость) и, таким образом, образуется вода с пониженным содержанием растворенных веществ. Более подробно о способах удаления растворенных солей из воды будет рассказано в главе, которая посвящена подготовке воды для аквариума.
Какие же вещества обусловливают жесткость воды? Это карбонаты — соли кальция и магния: CaCO3 и CaCO3 гидрокарбонаты Ca(HCO3)2 и Mg(HCO3)2, сульфаты CaSO4 и MgSO4, хлориды CaCl2 и MgCl2. Набор веществ, содержащихся в воде, может быть самым различным, что обусловлено геологическими особенностями той местности, где расположен водоем.
Карбонаты кальция и магния относятся к веществам, которые очень мало растворяются в воде: при температуре 20C в 1 л может раствориться 7 мг CaCO3 и 270 мг CaCO3. Однако этого достаточно, чтобы сделать воду жесткой.
Растворимость карбонатов кальция и магния существенно возрастает в присутствии углекислого газа, а этот газ, как известно, содержится в воздухе, который обычно пропускают через аквариум; его выделяют при дыхании рыбы и другие животные. В присутствии CO2 протекают реакции:
CaCO3 + СO2 + H2O = Ca(HCO3)2
MgСO3 + СO2 + H2O = Mg(HCO3)2
В результате образуются хорошо растворимые в воде гидрокарбонаты кальция и магния. Как правило, именно эти соли, а не карбонаты, содержатся в жесткой воде.
Для жесткой воды обычно различают временную, или карбонатную, и постоянную, или некарбонатную, жесткость. Первая обусловлена присутствием в воде Ca(HCO3)2 и Mg(HCO3)2. Временной жесткость называется потому, что при кипячении гидрокарбонаты разлагаются, и образующиеся карбонаты кальция и магния в значительном количестве выпадают в осадок:
Ca(HCO3)2 ―t→ CaCO3↓ + CO2 + H2O
Mg{HCO3)2 ―t→ CaCO3↓ + CO2 + H2O
Выпадающий осадок образует так называемую накипь на стенках посуды, в которой кипятится вода. За счет кипячения и удаления гидрокарбонатов из воды она умягчается.
Постоянная жесткость обусловлена присутствием в воде сульфатов, хлоридов и некоторых других солей кальция и магния, которые не удаляются при кипячении. Сумма временной и постоянной жесткости дает общую жесткость воды.
Для количественной характеристики жесткости можно использовать значение концентрации ионов Са2+ и Mg2+ в воде в мг/л, однако в литературе по аквариумистике наибольшее распространение получили другие единицы жесткости.
В России и странах СНГ для выражения жесткости воды используются миллиграмм-эквиваленты (миллиэквиваленты) ионов кальция и магния, содержащиеся в 1л воды*. Одному миллиграмм-эквиваленту в литре (мг-экв/л) соответствует содержание в воде 20,04 мг/л Ca2+ или 12,16 мг/л Mg2+, т. е. жесткость в мг-экв/л (Ж) может быть рассчитана по формуле:

Ж =
x(Ca2+)
+
x(Mg2+)
(9)


20,04

12,16


где x(Ca2+) и x(Mg2+) — концентрация в мг/л ионов кальция и магния соответственно.
* - Прим. В связи с принятием международной системы единиц СИ понятия грамм-эквивалент и миллиграмм-эквивалент были отменены. Однако, поскольку они все еще часто встречаются в литературе по аквариумистике и гидрохимии, мы сочли возможным использовать их в данной книге.
В аквариумной практике обычно выражают жесткость в так называемых немецких градусах. Один градус жесткости по этой шкале соответствует содержанию в 100 000 г воды 1 г оксида кальция CaO или 0,719 г оксида магния MgO. Для выражения жесткости в немецких градусах надо пересчитывать концентрацию ионов Са2+ и Mg2+ на концентрацию CaO и MgO по отношению молярных масс. Проведя такой расчет, легко получить, что 1 градус жесткости соответствует содержанию в воде 7,15 мг/л ионов Са2+ или 4,34 мг/л ионов Mg2+. Жесткость, выраженную в градусах, в дальнейшем мы будем обозначать символом dGH (в литературе встречаются различные обозначения: dH, GH, dGH и др.). В соответствии с вышеизложенным для расчета жесткости в градусах можно использовать формулу:
dGH =
x(Ca2+)
+
x(Mg2+)
(10)


7,15

4,34


Как уже отмечалось раньше, общая жесткость dGH складывается из временной жесткости (обозначение dKH) и постоянной жесткости (dNKH),поэтому можно записать:
dGH = dKH + dNKH.
(11)

Если известна жесткость в мг-экв/л (Ж), то, используя переходной коэффициент, можно перейти к жесткости в градусах (dGH) и наоборот. Формулы для перерасчета выглядят так:
dGH = 2,804 • Ж
(12)

Ж = 0,35663 • dGH.
(13)

Кроме единиц жесткости, о которых мы рассказали, существуют также французские, английские и американские градусы жесткости, которые встречаются в литературе, особенно в той, которая издается в этих странах. Французский градус соответствует содержанию 10 мг карбоната кальция CaCO3 в 1 л воды; английский — 1 грана (0,06482 г) CaCO3 в 1 галлоне (4,546 л) воды; американский градус — 1 мг CaCO3 в 1 л воды. Перейти от этих способов выражения жесткости воды к Ж (мг-экв/л) или к dGH можно, используя переходные коэффициенты, приведенные в табл. 7. Надо заметить, что существование различных единиц жесткости часто приводит к ошибкам в литературе и в любительских рекомендациях. Поэтому аквариумистам надо внимательно следить за тем, в каких единицах выражена жесткость воды.
Таблица 7 Соотношения между различными способами выражения жесткости воды
Единицы, в которых выражена жесткость
Коэффициенты (множители) для перевода жесткости


в мг-экв/л (Ж)
в немецкие градусы (dGH)

Французские градусы
Английские градусы
Американские градусы
0,19982
0,28483
0,01998
0,5603
0,7987
0,0560

Приведем пример расчета жесткости воды по приведенным выше формулам.
Пример. В 2 л воды растворено 50,1 мг ионов кальция и 60,8 мг ионов магния. Определите жесткость воды в мг-экв/л и в немецких градусах.
Решение. Вначале рассчитаем массовую концентрацию в мг/л (формула 3) ионов кальция и магния:
x(Ca2+) =
m(Ca2+)
;
x(Ca2+) =
50,1 мг
= 25,05 мг/л.


V


2 л


x(Mg2+) =
m(Mg2+)
;
x(Mg2+) =
60,8 мг
= 30,4 мг/л.


V


2 л


Используя формулу (9), рассчитываем жесткость воды в мг-экв/л;
Ж =
x(Ca2+)
+
x(Mg2+)
;


20,04

12,16


Ж =
25,05
+
30,04
= 1,25 + 2,5 = 3,75 мг-экв/л.



20,04

12,16



По формуле (10) можно рассчитать жесткость, выраженную в немецких градусах:
dGH =
x(Ca2+)
+
x(Mg2+)
;


7,15

4,34


dGH =
25,05
+
30,04
= 3,5 + 7 = 10,5.


7,15

4,34


Для расчета жесткости dGH можно было величину Ж умножить на переходный коэффициент (формула 12):
dGH = 2,804 • Ж ; dGH = 2,804 • 3,75 = 10,5.
Аквариумную воду в зависимости от ее жесткости принято классифицировать следующим образом: очень мягкая — жесткость до 5dGH, мягкая — 5—10, средней жесткости (умеренно жесткая) — 10—20, жесткая — 20—30 и очень жесткая — свыше 30.
Какая жесткость воды в аквариуме устраивает ее обитателей? Для ответа на этот вопрос вновь обратимся к гидрохимическому режиму природных водоемов — в большинстве случаев желательно создать рыбам такие условия, в которых они или их предки жили в природе. В табл. 8 приведены сведения о жесткости воды в некоторых природных водоемах, в которых живут аквариумные рыбы.
Как видно из таблицы, жесткость в природной среде обитания аквариумных рыб изменяется в широких пределах: значение dGH меняется от 0,2 до 20 и даже больше. Большинство рыб не могут нормально существовать и развиваться в совершенно мягкой воде, т. к. им необходим кальций. При недостатке этого элемента в воде замедляется рост рыб, возникают уродства скелета у мальков. Растения плохо развиваются при недостатке как кальция, так и магния.
Размножение некоторых рыб (неоны, пециллобриконы и др.) рекомендуется проводить в очень мягкой воде. В природных водоемах эти рыбы нерестятся в период дождей, когда речная вода значительно разбавляется водой, которая практически не содержит растворенных солей и имеет слегка кислую реакцию. Однако все сказанное относится, главным образом, к карбонатной жесткости (dKH). Некарбонатная жесткость (dNKH) может оставаться достаточно высокой (несколько градусов) даже при разведении неонов и других рыб.
Для успешного содержания в аквариуме многих видов рыб необходима жесткая вода (популярные рыбы — живородящие, цихлиды из африканских озер Малавии Танганьика).
Таким образом, можно заключить, что в большинстве случаев рыбам подходит вода, содержащая определенное количество солей кальция и магния (dGH от 5 до 20), а очень мягкая вода может использоваться, лишь как стимул к нересту для некоторых видов рыб.
Таблица 8 Жесткость воды в некоторых природных водоемах
Название водоема
Место расположения водоема
Жесткость воды, мг-экв/л
Жесткость воды, dGH

р. Амазонка (Сбидос)
Южная Америка: Бразилия
0,3
0,9

р. Парана
Южная Америка: Аргентина
0,6
1,6

р. Рио-Негру
Южная Америка: Бразилия
1,4
3,9

р. Рио-Гранде
Центральная Америка: Никарагуа
7,4
20,7

р. Нил (Каир)
Африка: Египет
1,5
4,2

р. Ньонг
Африка: Камерун
0,18—0,36
0,5—1,0

оз. Танганьика
Африка: Заир, Танзания
4,3—7,2
12—20

р. Борай Пет
Азия: Таиланд
0,07—0,36
0,2—1,0

Подходит ли вода из наших природных водоемов для содержания тропических аквариумных рыб и растений? В табл. 9 приведена жесткость воды в некоторых водоемах СНГ, измеренная в летний период.
Во всех водоемах, где проводились исследования, преобладает карбонатная жесткость, поэтому при использовании воды из некоторых водоемов возникает необходимость увеличения постоянной жесткости за счет растворения солей кальция и магния (CaSO4, СаС12, MgSO4, MgCl2. В Неве вода очень мягкая, для содержания большинства рыб необходимо поднять как временную, так и постоянную жесткость.
Таблица 9 Жесткость воды в некоторых водоемах СНГ
Река
Место отбора пробы воды
Общая жесткость, dGH
Карбонатная жесткость, dKH
Постоянная жесткость, dNKH

Волга
г. Старица
8,4
7,0
1,4

Волга
г. Кинешма
9,0
5,7
3,3

Москва
г. Коломна
9,8
7,4
2,4

Нева
с. Ивановское
1,4
1,4
0

Западная Двина
г. Полоцк
6,6
4,9
1,7

Днестр
г. Бендеры
15,2
8,6
6,6

Дон
г. Калач
14,0
10,4
3,6

Енисей
г. Красноярск
3,6
3,3
0,3

Северная Двина
с. Усть-Пинега
8,8
5,1
3,7

Ока
г. Калуга
14,6
11,5
3,1

Жесткость воды в водоемах нашей страны имеет значительные сезонные колебания. На рис. 8 показаны сезонные колебания значения dGH для двух рек СНГ. Обычно максимальное значение жесткости воды можно наблюдать в период зимней межени (январь — март). Во время весеннего паводка наблюдается резкое падение dGH. Летом и осенью жесткость воды постоянно возрастает и достигает максимума к зиме. Сезонные колебания жесткости воды следует учитывать при периодической подмене воды в аквариуме. Особенно осторожным аквариумисту надо быть в период весеннего паводка. В это время следует отказаться от замены большого количества воды. Кроме резкого изменения жесткости, существует опасность внесения в аквариум нежелательных веществ, которые попадают в водоемы с талыми водами.
Рис. 8. Сезонное изменение жесткости в водоемах России: 1 — р. Волга (г. Ржев), 2 — р. Дон (cm-ца Раздольская)
В процессе эксплуатации аквариума жесткость воды в нем несколько изменяется в ту или другую сторону. Например, если грунт содержит карбонатные породы (известняк, мел, мрамор, доломит и др.), может происходить их медленное растворение. При отсутствии в воде углекислого газа это растворение протекает малозаметно. Однако если в аквариум при помощи компрессора попадает воздух из жилого помещения с достаточно высоким содержанием CO2, то процесс ускоряется за счет протекания реакции:
CaCO3 + CO2 + H2O = Ca(HCO3)2
Жесткость воды увеличивается и за счет испарения воды. При этом растворенные соли остаются в аквариуме и их концентрация увеличивается (в некоторых руководствах рекомендуют доливать в аквариум дистиллированную воду взамен испарившейся, чтобы не возрастала жесткость, однако, это не всегда осуществимо).
Жесткость воды несколько уменьшается вследствие выпадения в осадок карбонатов кальция и магния при подкисления воды, а также в результате поглощения ионов кальция и магния рыбами и некоторыми аквариумными растениями (особенно потамогетонами и эхинодорусами).
Изменение жесткости воды в аквариуме происходит достаточно медленно, если регулярно проводить подмену воды (25—30% еженедельно), то резких колебаний жесткости можно избежать.
Если нужно увеличить карбонатную жесткость воды, в аквариум следует поместить известняк и создать в воде достаточную концентрацию CO2 (например, установить продувку воды воздухом). Для увеличения не карбонатной жесткости обычно добавляют раствор хлорида кальция CaCl2 и сульфата магния MgSO4. Уменьшить жесткость воды несколько сложнее. Здесь наиболее простой путь — добавление дистиллированной, смягченной (иногда — дождевой) воды.
Жесткость воды связана с ее кислотностью. Чем более жесткой является вода, тем она более щелочная. На рис. 9 показана зависимость значения водородного показателя воды от ее жесткости.
Рис. 9. Связь между жесткостью воды и ее кислотностью
Связь между жесткостью воды и pH можно легко объяснить. Как мы уже видели раньше, в жесткой воде преобладает временная или карбонатная жесткость, т. е. в ней содержатся соли Ca(HCO3)2 и Mg(HCO3)2. Эти соли в водном растворе подвергаются гидролизу — взаимодействуют с водой. Схему гидролиза Ca(HCO3)2 можно записать следующим образом:
диссоциация Ca(HCO3)2 = Са2+ + 2HCO3‾
гидролиз HCO3‾ + H2O = H2СO3 + ОН‾
Из уравнения гидролиза видно, что в результате устанавливающегося равновесия в воде накапливаются гидроксид-ионы ОН‾, которые обусловливают щелочную реакцию среды.
Все вышесказанное не означает однако, что нельзя получить жесткую воду с кислой реакцией. Такая вода должна содержать хлориды и сульфаты кальция и магния, т. е. в ней преобладает постоянная (некарбонатная) жесткость. Такую среду можно получить, если добавить в мягкую воду соответствующие соли или подкислить обычную воду с карбонатной жесткостью соляной или серной кислотой. При подкислении будет происходить разложение гидрокарбонатов, например:
Mg(HCO3)2 + 2HCl = MgCl2 + CO2 + H2O
Мягкая вода обычно имеет значение pH меньше 7. Кислые свойства мягкой воды связаны, главным образом, с растворением CO2 и образованием угольной кислоты, о чем мы уже говорили в предыдущем разделе.
В зависимости от жесткости и связанной с ней кислотности можно различить три основные разновидности аквариумной воды, пригодной для содержания определенных представителей пресноводной гидрофауны и гидрофлоры;
1) кислая и мягкая вода;
2) вода с нейтральной реакцией и средней жесткостью;
3) щелочная и жесткая вода;
Если аквариумист создаст все три вида аквариумов, то практически он может содержать всех представителей пресноводных тропических рыб и растений. Если этого сделать не удастся, то выбор рыб и растений будет ограничен.
Таблица 10 Представители пресноводной гидрофауны и гидрофлоры, подходящие для различных видов аквариумной воды
Гидробионты
Кислая и мягкая вода
Нейтральная вода средней жесткости
Щелочная и жесткая вода

Тропические рыбы

Неон (Paracheirodon innesi), лялиус (Colisa lalia)
Данио-рерио (Brachydanio rerio), цихлазома Меека (Cichlasoma meeki)
Псевдотрофеус зебра (Pseudotropheus zebra), велифера (Poecilia velifera)

Водные растения
Болбитис (Bolbitis heudelotii), ротала Валлиха (Rotala wallichii)
Криптокорина Вендта (Cryptocoryne wendtii), лимнофила водная (Limnophila aquatica)
Эхинодорус (Echinadorus horisontalis), анубиас нана (Anubias barteri, var. nаnа)

Например, нельзя совместить в одном аквариуме, два вида рыб из семейства цихлид: дискуса (Symphysodon diskus) из южноамериканской реки Риу-Негру, которому нужна мягкая и кислая вода, и юлидохромиса орнатуса (Julidochromis ornatus) из африканского озера Танганьика. Этой рыбе подходит щелочная жесткая вода. В табл. 10 показано, какие водные организмы могут содержаться в аквариуме каждого вида.
Следует отметить, что некоторые гидробионты легко адаптируются к условиям содержания, могут развиваться в воде различного гидрохимического состава. Например, людвигия (Ludvigia repens) хорошо растет и развивается как в кислой мягкой, так и в жесткой щелочной воде. К воде различной кислотности и жесткости легко адаптируются сомики из рода коридорас, например, крапчатый сомик (Corydoras paleatus),
Определение общей жесткости воды
Аквариумисту очень полезно научиться определять общую жесткость воды. Это достаточно просто. Метод определения общей жесткости основан на взаимодействии ионов кальция и магния, содержащихся н воде, с динатриевой солью этилен-диаминтетрауксусной кислоты (техническое название — Трилон Б), Эта соль образует с ионами Ca2+ и Mg2+ прочные комплексные соединения. В процессе анализа к пробе воды постепенно прибавляют раствор трилона Б до полного взаимодействия с ионами кальция и магния. Окончание реакции определяют по изменению окраски специального вещества — индикатора, который добавляют в воду. Такой метод в аналитической химии получил название титрование.
Для проведения анализа необходимы следующая химическая посуда и оборудование:
1. Бюретка или микробюретка (рис. 17, а, б). В некоторых руководствах указывается, что нужна обязательно микробюретка, но это не так. Достаточно точный анализ можно провести, применяя обычные бюретки (на 10, 25 или 50 мл), которые проще достать, а при необходимости можно изготовить из стеклянной трубки, отградуировав ее.

Рис. 17. Бюретки (а) и микробюретка (б) для титрования; в) закрепление бюретки в штативе для титрования

Для проведения титрования бюретку закрепляют в металлическом штативе при помощи зажимов, как показано на рис. 17, в, Можно изготовить самодельное приспособление для закрепления бюретки. Однако надо учитывать, что оно не должно закрывать измерительную шкалу и затруднять заливание растворов в бюретку.
2. Пипетка для отбора пробы воды на 25 или 50 мл (рис. 18, а). Вода в такую пипетку набирается при помощи резиновой груши. При необходимости требуемый объем воды можно отбирать мерными цилиндрами или мензурками (рис. 18, б, в), что, однако, менее точно.
3 Конические колбы вместимостью 200—250 мл, в которых проводится титрование (рис. 18,г).
4. Мерные колбы на 100, 200, 250, 500 или 1000 мл (рис. 18,д), которые используются для точного приготовления растворов с требуемой молярной концентрацией. Делается это так: в колбу определенной вместимости вносится рассчитанное количество растворяемого вещества. Наливают воду приблизительно на 3/4 объема колбы. Закрыв колбу пробкой, интенсивно встряхивают до полного растворения вещества. После этого доливают воду до метки на горле колбы и несколько раз переворачивают до полного перемешивания. При отсутствии мерных колб можно использовать обычные бутылки, нанеся на них отметки.
5. Весы, позволяющие брать навески веществ для приготовления растворов с точностью до 0,01 г.


Рис. 18. Пипетка (а), мерный цилиндр (б), мензурка (в), коническая колба (г), мерная колба (д).

Теперь о том, какие реактивы и растворы потребуются для определения жесткости воды. Для приготовления всех растворов, используемых при химическом анализе, надо использовать дистиллированную или химически обессоленную воду.
1. Раствор трилона Б. Для титрования готовят 0.025M раствор трилона Б, взяв 9,3 г этой соли на 1 л раствора (или 4,65 г на пол-литровую колбу).
Если вода достаточно мягкая, то для повышения точности определения можно использовать 0,01М раствор трилона Б. Для приготовления такого раствора на литровую колбу нужно взять 3,72 г соли.
2. Буферный раствор, содержащий хлорид аммония и водный раствор аммиака. Этот раствор позволяет поддерживать рН около 10, что необходимо для точного определения жесткости.
Для приготовления буферного раствора в колбу на 500 мл вносят 10 г хлорида аммония NH4Cl и 50 мл концентрированного (20—25%-ного) раствора аммиака. Доливают дистиллированную воду до отметки 500 мл.
3. Индикатор. В качестве индикатора можно использовать: эриохром черный Т, хромоген ЕТ-00, кислотный хром темно-синий или кислотный хром синий К. Растворы этих индикаторов не могут храниться длительное время.
Лучше всего индикатор размешать с сухим хлоридом калия KCl или хлоридом натрия NaCl (поваренная соль) в отношении 1:2. При титровании полученную смесь понемногу добавлять в воду.
Проведение анализа. При помощи пипетки или цилиндра (мензурки) отмеряют 50 мл воды и вносят в коническую колбу на 200—250 мл. Добавив 50 мл аммиачного буферного раствора, вносят щепотку (на кончике стеклянного или бумажного шпателя) индикаторной смеси (индикатор + соль).
В бюретку наливают раствор трилона Б, доведя его объем точно до верхнего нулевого деления бюретки. Затем проводится титрование: в колбу при непрерывном перемешивании добавляют раствор трилона Б из бюретки мелкими порциями. В конце титрования, когда начинает изменяться окраска индикатора, раствор трилона Б из бюретки добавляют по каплям.
Титрование прекращают после изменения цвета индикатора с красного (или лилового) на синий. После этого по бюретке замеряют объем раствора трилона Б, пошедшего на титрование VT.
Титрование надо проводить трижды, а если есть большие расхождения в значениях VT, то и большее число раз. Для расчетов применяют среднее арифметическое значение объема раствора трилона Б, использованного на титрование.
Зная объем VT (в мл), объем воды, взятой на титрование VT, (в данном случае — 50 мл), и молярную концентрацию раствора трилона Б CT (0,025М или 0,01М), можно рассчитать жесткость воды Ж (в мг-экв/л) или dGH (в градусах) по формулам:

Ж =
2000 • VT • CT
(17)


VB



Таблица 21. Определение жесткости воды (dGH) по расходу 0,025М раствора трилона Б (на 50 мл воды)
dGH
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

0
-
0,04
0,07
0,10
0,14
0,18
0,21
0,25
0,28
0,32

1
0,36
0,39
0,43
0,46
0,50
0,53
0,57
0,60
0,64
0,68

2
0,71
0,75
0,78
0,82
0,85
0,89
0,93
0,96
1,00
1,03

3
1,07
1,10
1,14
1,18
1,21
1,25
1,28
1,32
1,35
1,39

4
1,43
1,46
1,50
1,53
1,57
1,60
1,64
1,68
1,71
1,75

5
1,78
1,82
1,85
1,89
1,92
1,96
2,00
2,03
2,07
2,10

6
2,14
2,17
2,21
2,25
2,28
2,32
2,35
2,39
2,42
2,46

7
2,50
2,53
2,57
2,60
2,64
2,67
2,71
2,75
2,78
2,82

8
2,85
2,89
2,92
2,96
2,99
3,03
3,07
3,10
3,14
3,17

9
3,20
3,24
3,28
3,32
3,35
3,39
3,42
3,46
3,50
3,53

10
3,57
3,60
3,64
3,67
3,71
3,74
3,78
3,81
3,85
3,89

11
3,92
3,96
3,99
4,03
4,06
4,10
4,14
4,17
4,21
4,24

12
4,28
4,31
4,35
4,39
4,42
4,46
4,49
4,53
4,56
4,60

13
4,63
4,67
4,70
4,74
4,79
4,81
4,85
4,88
4,92
4,96

14
4,99
5,03
5,06
5,10
5,13
5,17
5,21
5,24
5,28
5,31

15
5,35
5,38
5,42
5,45
5,49
5,53
5,56
5,60
5,63
5,67

16
5,71
5,74
5,78
5,81
5,85
5,88
5,92
5,96
5,99
6,03

17
6,06
6,10
6,13
6,17
6,21
6,24
6,28
6,31
6,35
6,38

18
6,42
6,46
6,49
6,53
6,56
6,60
6,63
6,67
6,70
6,74

19
6,78
6,81
6,85
6,88
6,92
6,95
6,99
7,03
7,06
7,10

20
7,13
7,17
7,20
7,24
7,28
7,31
7,35
7,38
7,42
7,45


или
dGH =
5608 • VT • CT
(18)


VB


Для оперативного определения жесткости по объему раствора трилона Б, использованного на титрование, удобно пользоваться таблицами 21 и 22. С помощью этих таблиц без специальных расчетов мы можем получить значение общей жесткости с точностью до 0,1 dGH.
Таблица 22 Определение жесткости воды (dGH) по расходу 0,01 М раствора трилона Б (на 50 мл воды)
dGH
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

0
-
0,09
0,18
0,27
0,36
0,45
0,53
0,62
0,71
0,80

1
0,89
0,98
1,07
1,16
1,25
1,34
1,43
1,52
1,60
1,69

2
0,78
1,87
1,96
2,05
2,14
2,23
2,32
2,41
2,50
2,59

3
0,67
2,76
2,85
2,94
3,03
3,12
3,21
3,30
3,39
3,48

4
0,57
3,66
3,74
3,83
3,92
4,01
4,10
4,19
4,28
4,37

5
0,46
4,55
4,64
4,73
4,81
4,90
4,99
5,08
5,17
5,26

6
5,35
5,44
5,53
5,62
5,71
5,80
5,88
5,97
6,06
6,15

7
6,24
6,33
6,42
6,51
6,60
6,69
6,78
6,87
6,95
7,04

8
7,13
7,22
7,31
7,40
7,49
7,58
7,67
7,76
7,85
7,94

9
8,02
8,11
8,20
8,29
8,38
8,47
8,56
8,65
8,74
8,83

10
8,92
9,00
9,09
9,18
9,27
9,36
9,45
9,54
9,63
9,72

В некоторых руководствах по аквариумистике (например, в книге В. С. Жданова Аквариумные растения) приводятся методики определения жесткости в присутствии некоторых катионов (Cu2+, Zn2+, Mn2+). Наш опыт проведения анализов воды, используемой в аквариумистике, показывает, что для практических целей такой анализ не нужен, он лишь затрудняет определение и требует дополнительных химических реактивов. Ошибка, вносимая этими ионами, для воды, в которой могут жить рыбы и растения, обычно не превышает 0,1—0,2 dGH.
Определение карбонатной (временной) жесткости воды
Для определения карбонатной жесткости воды, которое проводится методом титрования воды раствором соляной кислоты, необходима та же химическая посуда, что и для определения общей жесткости (бюретка, пипетка или мерный цилиндр, коническая колба, мерные колбы и весы).
Необходимые растворы.
1. Раствор соляной кислоты. Для титрования обычно используют 0,05М раствор соляной кислоты (HCl).
Чтобы приготовить такой раствор, в литровую колбу внести 3 98 мл (приблизительно 4 мл) концентрированной кислоты (38%-ной с плотностью 1,19 г/мл) и долить дистиллированную воду до метки на горловине колбы. Если используется другой исходный раствор кислоты для приготовления 0,05М раствора, то необходимо сделать пересчет. Раствором соляной кислоты заполняется бюретка,
2. Индикатор метиловый оранжевый. Это очень распространенный индикатор, имеющийся во многих химических лабораториях. Для приготовления раствора этого индикатора 0,1 г его растворяют в 100 мл дистиллированной воды.

Проведение анализа. В коническую колбу на 200-250 мл помещают отмеренное количество (50 мл) анализируемой воды. Добавляют 3—4 капли раствора метилового оранжевого. Далее проводят титрование раствором кислоты из бюретки до изменения окраски индикатора с желтой на розовую. По бюретке определяют объем раствора кислоты, использованного на титрование VK. (в мл).
Расчет карбонатной жесткости проводится по формуле:
dKH =
2804 • VK • CK
(19)


VB


где CK — молярная концентрация раствора соляной кислоты (0,05М) , VВ — объем воды, взятой для титрования (50 мл). Для расчета карбонатной жесткости в мг-экв/л надо значение dKH разделить на 2,804.
ОКИСЛИТЕЛИ И ВОССТАНОВИТЕЛИ
Многие вещества обладают особыми свойствами, которые в химии принято называть окислительными или восстановительными. В аквариумных процессах эти вещества играют достаточно важную роль, поэтому мы расскажем о них подробнее.
Что же такое окислитель и восстановитель, окисление и восстановление? Окислительно-восстановительные свойства вещества связаны с процессом отдачи и приема электронов атомами, ионами или молекулами. Окислитель — это вещество, которое в ходе реакции принимает электроны, т. е. восстанавливается; восстановитель — отдает электроны, т. е. окисляется. Рассмотрим такой пример; магний реагирует с кислородом, образуя оксид магния:
2Mg + O2 = 2MgO
В результате этой реакции металл магний (в целом электронейтральное вещество) переходит в частицы (ионы) с зарядом (степенью окисления) +2. Для всех металлов в соединениях характерна положительная степень окисления.
Кислород из электронейтрального вещества превращается в частицы с зарядом -2. Эти процессы можно записать в виде так называемых электронных уравнений:
Mg0 – 2e‾ = Mg2+
О0 + 2e‾ = O2‾
Отсюда видно, что магний отдает электроны, следовательно, он является восстановителем, который окисляется, а кислород, принимающий электроны (т. е. восстанавливающийся), — окислителем.
Процессы окисления и восстановления воды сопутствуют друг другу, один без другого не может происходить. Поэтому процесс передачи электронов от одних веществ к другим, обычно называют окислительно—восстановительными реакциями. Эти реакции очень распространены в живой природе; они играют существенную роль в процессах, происходящих в аквариуме.
Одни химические вещества проявляют свойства окислителей, другие — восстановителей.
Важнейшими восстановителями являются:
— многие металлы (магний, алюминий, цинк, железо и др.);
— аммиак NH3 и соли аммония (например, NH4Cl); — сероводород H2S и сульфиды (например, Na2S);
— йодоводородная кислота HI, бромоводородная кислота HBr, соляная кислота HCl и их соли (например, KI, NaBr, CaCl2);
— тиосульфат (гипосульфит) натрия Na2S2O3;
— сульфит натрия Na2SO3; — пероксид водорода H2O2;
— многие органические вещества: спирты, альдегиды, карбоновые кислоты, углеводороды и др. Важнейшими окислителями являются:
— азотная кислота HNO3 и нитраты (например, NaNO3);
— концентрированная серная кислота H2SO4;
— галогены: хлор Cl2, бром Br2, йод I2;
— кислород O2;
— перманганат калия KМnO4;
— дихромат калия K2Cr2O7;
— пероксид водорода H2O2.
Некоторые вещества, например, пероксид водорода H2O2, в зависимости от условий могут проявлять свойства как окислителей, так и восстановителей.
Силу окислителей и восстановителей можно сравнить, используя значения электродных (или окислительно-восстановительных) потенциалов.
Значение потенциалов окислительно-восстановительных систем в стандартных условиях (температура 25oС, концентрация веществ 1 моль/л, нормальное атмосферное давление) приводится в химических справочниках. Рассмотрим в качестве примера систему:

МnO4‾ + 8H+ + 5е‾
=
Mn2+ + 4H2O,
Е0 = + 1,52 В.

окислительная форма

восстановительная форма


В этой системе окислительная форма (окислитель) — Это вещество, которое восстанавливается и превращается в восстановительную форму (восстановитель). И наоборот, восстановительная форма может H+ быть Окислена до окислительной формы. Ионы показывают, что такая реакция возможна в кислой Среде.
Если сравнить две окислительно-восстановительные системы:
SO42‾ + 2H+ +
2e‾ =
SO32‾ + H2O,
E = +0,2 В.

окислитель

восстановитель


MnO4‾ + 8H+ +
5e‾ =
Mn2+ + 4H2O,
E = +1,52В,

окислитель

восстановитель


то в них более сильным окислителем будет тот, система которого имеет более положительный потенциал, т. е. МnO4‾, а более сильным восстановителем — тот, система которого имеет более отрицательный потенциал, т. е. SO32‾. Следовательно, КМnO4 будет более сильным окислителем, чем K2SO4; K2SO3 — более сильный восстановитель, чем МnSO4. Так можно сравнить силу всех окислителей и восстановителей. Если в воде находятся различные окислители и восстановители в смеси, то окислительно-восстановительный потенциал можно определить экспериментально по схеме, изображенной на рис. 7, используя вольтметр с высоким значением входного сопротивления или pH-метр в режиме измерения потенциала. Вместо стеклянного электрода берется платиновый индикаторный электрод, на котором определяется потенциал Eэксп. После измерения надо перейти к значению потенциала по стандартной водородной шкале Eh (относительно стандартного водородного электродa), используя соотношение
Eh = (Eэксп + 0,2) В.
(14)

В аквариумной воде всегда присутствуют как окислители, так и восстановители. К окислителям относятся, например, такие компоненты воды как нитрат-ионы, кислород; к восстановителям — сероводород, аммиак, гуминовые кислоты и многие другие органические соединения. Соотношение тех или иных соединений определяет окислительные или восстановительные свойства воды. Обычно в аквариумной воде несколько преобладают вещества с восстановительными свойствами. Для количественной характеристики окислительно-восстановительных свойств аквариумной воды используется величина rH2. В книгах по аквариумистике ее называют редокс-потециал. Этот термин некорректен, т. к. потенциал — величина измеряемая в вольтах, а rH2 — безразмерная (как pH). Поэтому величину гH2 следует называть показатель редокс-потенциала или показатель окислительно-восстановительного потенциала.
Для расчета значения показателя rH2 используется уравнение:
rH2 =
2FEh
+ 2 pH = - LgP(H2);
(15)


2,303RT



где F — постоянная Фарадея (F = 96485 Кл/моль);
R—универсальная постоянная (R = 8,31 Дж • моль‾1 • К‾1);
Т — температура по абсолютной шкале (в К);
Eh — экспериментально измеряемое значение окислительно-восстановительного потенциала в воде в В;
pH — водородный показатель;
P(H2) — парциальное давление водорода в окислительно-восстановительной системе.
Если принять температуру равной 20C, то, учитывая значение констант, получим:
rH2 =
Eh
+ 2 pH;
(16)


0,029



Как видно из формул (15) и (16) показатель rH2 связан с окислительно-восстановительным потенциалом и учитывает влияние на него кислотности воды в аквариуме.
Для определения значения rH2 необходимо определить pH и Еh, как рассмотрено выше. Подробности методики таких измерений будут изложены в третьем разделе книги.
Считается, что шкала rH2 изменяется в пределах от 0 до 42. Так, в природных водоемах показатель окислительно-восстановительного потенциала принимает значение от 26 до 32, в аквариумной воде — от 28 до 31. Значение rH2 оказывает существенное влияние на жизнедеятельность аквариумных организмов. На рис. 10 показаны оптимальные интервалы значений rH2 для некоторых аквариумных растений.
Рис. 10. Оптимальные значения показателя редокс-потенциала для некоторых аквариумных растений.
О значении rH2 в аквариуме можно приблизительно судить по внешним признакам — по самочувствию растений. Например, если хорошо растут криптокорины, а эхинодорусы — плохо, это указывает на достаточно низкое значение rH2 (28). Если хорошо растут апоногетоны и эхинодорусы, а криптокорины — плохо, то значение показателя редокс-потенциала приблизительно равно 30.
Обычно во вновь организуемых аквариумах rH2 бывает высоким (30—31). По мере накопления в фунте и воде продуктов жизнедеятельности рыб (большинство из них — восстановители), показатель rH2 снижается, особенно в придонных слоях. За счет деятельности микроорганизмов, роста растений (при их большом числе) rH2 возрастает, т. е. в аквариуме происходит саморегуляция окислительно-восстановительных свойств воды. Поднять значение rH2 можно за счет подмены воды, аэрации и удаления продуктов жизнедеятельности обитателей аквариума, чистки грунта.
Как уже говорилось, в аквариумной воде всегда присутствуют растворенные органические соединения, которые обусловливают преобладание у нее восстановительных свойств. Определить суммарную концентрацию растворенной органики в воде можно по количеству кислорода или какого-либо сильного окислителя, затраченного на ее окисление. В качестве таких окислителей обычно используют растворы перманганата калия (КМnO4) или дихромата калия (K2Cr2O7), a определяемые свойства воды — перманганатная или дихроматная окисляемость. Количественно это свойство выражают в миллиграммах (мг) активного (атомного) кислорода, затраченного на окисление 1 л воды. В аквариумной воде окисляемость может составлять от 2—5 мг O/л до нескольких десятков. Чем больше этот показатель, тем больше органических веществ (восстановителей) содержится в аквариумной воде. Наиболее оптимальными значениями окисляемости для аквариумов можно считать 4—12 мг O/л.
ЧТО НУЖНО ВОДНЫМ РАСТЕНИЯМ
Как мы уже знаем, для обеспечения жизнедеятельности обитателей аквариума необходимо постоянное поступление питательных веществ. Из продуктов питания живые организмы выделяют необходимые им молекулы или атомы отдельных элементов и используют их в процессе жизнедеятельности. Для построения органических структур необходимы элементы постоянно входящие в состав живого организма и имеющие определенное биологическое значение. Эти элементы называются биогенными. Главными среди них являются кислород, составляющий приблизительно 41% массы растения (здесь и далее в главе указывается массовая доля элемента в сухом веществе), углерод (45,4%) и водород (5,5%). Помимо основных элементов в состав живого организма в достаточно больших количествах входят: азот, кальций, магний, калий, фосфор, сера, хлор и натрий. Они названы макроэлементами. Кроме них для жизнедеятельности организма в очень малых количествах необходим еще целый ряд микроэлементов, к которым относятся железо, медь, марганец, цинк, молибден, бор и некоторые другие. Успехи химического анализа значительно расширили перечень биогенных элементов. Некоторые из них имеют значение только для отдельных групп живых существ.
Как уже говорилось, все необходимое организм получает с питательными веществами. Для рыб, моллюсков и других животных питанием служат уже существующие органические вещества, входящие в состав корма. Они поступают в аквариум главным образом из внешнего мира. Небольшое количество пригодных для потребления животными органических веществ образуется в аквариуме. Но во всех случаях рыбы используют уже сформированный в сложные органические молекулы набор элементов. Эти молекулы, обладая большой энергией химических связей, несут в себе тот запас энергии, который необходим для существования животного. Иначе обстоит дело с растениями. Все необходимые вещества они образуют только из компонентов, находящихся в аквариуме.
Формы, в которых находятся биогенные элементы, а также их концентрация, тесно связаны с химическими процессами, протекающими в аквариуме, и с физико-химическими свойствами воды. Например, водопроводная вода содержит значительное количество двухвалентного железа. Оно легко усваивается растениями. В аквариуме железо (II) быстро окисляется до трехвалентного и, вступая в реакцию с карбонатами и фосфатами, выпадает в виде трудно растворимого осадка и становится непригодным для питания растений.
Рассмотрим отдельные биогенные элементы, их содержание в воде и значение для растительных организмов.
Основная масса растения представлена веществами, состоящими из кислорода, углерода и водорода. Клеточные стенки, образующие скелет растения, состоят в основном из целлюлозы, запасы питательных веществ содержатся, главным образом, в виде сахара и крахмала. В состав всех названных веществ входят элементы O, C, H.
Азот входит в состав всех белковых молекул и аминокислот. Содержание азота в среднем составляет 3%. Животные получают азот из животной или растительной пищи, а растения — в виде неорганических соединений, главным образом, нитратов (NO3‾) и аммония (NH4+). Свободный азот из атмосферы недоступен водным растениям. Недостаток азота ведет к снижению содержания хлорофилла в листьях, в первую очередь в старых, к уменьшению размеров растения. В аквариуме, населенном рыбами, азотное голодание растений практически не встречается. Чаще наблюдается избыток азотных соединений.
На следующем месте после азота по потреблению стоит фосфор. Его содержание в растениях составляет около 0,23%. Фосфор входит в состав макроэнергетических соединений живого организма, например АТФ и АДФ. Фосфатные связи этих соединений позволяют накапливать энергию, запасать ее и использовать для образования сложных органических молекул, транспорта молекул и переноса энергии в клетке.
Основным источником фосфора для растений служат фосфаты. Наибольшее количество фосфатов находится в виде дигидрофосфат-ионов H2PO4‾. Некоторое количество фосфатов содержится также в виде ионов HPO42‾ и PO43‾. Количественные соотношения этих ионов тесно связаны с кислотностью воды. Абсолютное содержание фосфора в водопроводной и природной воде составляет от 1 до 100 мкг/л. В аквариум фосфор попадает со свежей водой и кормом для рыб. Остатки органических веществ поступают в грунт, где преобразуются в неорганические фосфат-ионы и в таком виде усваиваются растениями. При недостатке фосфора в листьях накапливается красный пигмент антоциан, листья мельчают и становятся уже.
Значение биогенного элемента калия для растения многообразно. Он способствует нормальному протеканию фотосинтеза, участвует в образовании питательных веществ. Приблизительное содержание калия в растениях составляет 1,4%. Основная масса его находится в виде ионов К+, которые легко перемещаются через клеточные мембраны. Больше всего ионов кадия содержится в листьях растений. Недостаток этого, элемента нарушает азотный обмен и приводит к отмиранию тканей.
Сера входит в состав некоторых аминокислот, которые в свою очередь являются составными частями белков. Кроме того, сера содержится в веществах, необходимых для осуществления различных окислительно-восстановительных реакций в процессе фотосинтеза. Содержание серы составляет приблизительно 0,35%. Она потребляется растениями главным образом в виде сульфат-ионов SO42‾, При недостатке этого элемента задерживается рост и размножение растения.
Содержание кальция в растении составляет 1,8%. Он входит в состав клеточных стенок в виде малорастворимых солей. Кальций играет важную роль в избирательной проницаемости клеточных мембран. Недостаток этого элемента приводит к недостаточной плотности мембран с точки зрения диффузии через них различных веществ. Если молодым растениям не хватает кальция, то они бледнеют и приобретают неправильную форму. В аквариумных условиях обычно недостатка кальция не наблюдается, т. к. он всегда содержится в водопроводной воде в достаточном количестве.
Большое значение в жизни растений имеет магний. Он входит в состав молекул хлорофилла. Содержание магния в растениях составляет 0,32%. При недостатке этого элемента листья желтеют от дефицита хлорофилла. Недостаток магния может создаваться при относительно высоком содержании кальция вследствие антагонизма между ионами Са2+ и Mg2+. Во многих районах средней полосы нашей страны содержание магния в природной воде невелико, и оно быстро убывает при развитии растительности. Поэтому многим аквариумистам приходится вносить этот элемент в аквариумную воду.
Содержание хлора в растениях составляет 0,2%. В виде хлорид-анионов Cl‾ он участвует в регуляции внутриклеточного давления. У некоторых растений содержанке хлора невелико, его роль выполняют органические ионы, и он не является необходимым элементом. В некоторых случаях хлор стимулирует вспомогательные процессы фотосинтеза, прежде всего те из них, которые связаны с аккумулированием и выделением энергии (однако точно его роль в этих процессах еще не определена). В природных водах всегда содержится достаточное для растений количество хлорид—ионов.
Содержание натрия в растениях составляет 0,12%. Несмотря на высокое содержание, его роль в жизни растения изучена недостаточно. Известно, что натрий способствует созданию высокого осмотического давления в клетках и является антагонистом калия. В воде этот элемент всегда присутствует в достаточных количествах в виде катионов натрия Na+
Следующая группа питательных веществ — микроэлементы. Они входят в состав различных ферментов и принимают участие в биохимических реакциях. Железо содержится во всех растениях (массовая доля составляет 0,014%). Оно входит в состав многих важных растительных ферментов, участвующих в окислительно-восстановительных реакциях, где используется способность железа резко переходить из двух- в трехвалентное состояние и обратно:
Fe3+ + e‾ = Fe2+
Эти ферменты участвуют в синтезе хлорофилла. При недостатке железа синтез хлорофилла затруднен, а при сильном недостатке листья могут стать совсем белыми. Заболевание, вызванное недостатком железа, носит название хлороза. Аквариумные растения часто страдают от этой болезни, т. к. в воде, богатой фосфатами, железо быстро выпадает в осадок. Обеспечение нормального питания железом — одна из наиболее важных задач при культивации водных растений.
Мы в течение ряда лет при культивации аквариумных растений используем различные минеральные подкормки, в том числе соединения железа. Наиболее эффективно применение комплексных соединений железа (II) с органическими комплексообразующими агентами, например, этилендиаминтетрауксусной кислотой {ЭДТА). Химический анализ воды в аквариуме показывает, что особенно интенсивное поглощение комплексных соединений железа происходит в первые 12 ч после введения добавки. Затем, в течение трех суток, концентрация железа в воде постепенно снижается и становится приблизительно в 5—10 раз меньше исходной (сразу после введения добавки). Поэтому необходимо регулярно, не реже двух раз в неделю, подкармливать аквариумные растения железосодержащими препаратами.
Кроме ЭДТА в качестве комплексообразующих агентов применялись и другие органические соединения. Эффективность некоторых из них при нейтральной и щелочной реакции воды оказалась значительно выше, чем эффективность ЭДТА (рис. 15).
Содержание меди в растении составляет 0,0015%. Мель служит составной частью некоторых окислительных ферментов и белков, таким образом, способствуя росту и развитию растений. По нашим данным, медь довольно активно поглощается из воды аквариумными растениями: после внесения добавки, содержащей микроколичества сульфата меди (II), в течение 12—20 часов концентрация этого элемента в воде падает практически до нуля (анализ проводился с использованием высокоточных инструментальных методов).

Рис. 15. Усвояемость комплексных соединений железа растениями при различной кислотности воды.
Комплексообразующие агенты: 1 - ЭДТА, 2 - диэтилентриаминпентауксусная кислота, 3 - этилендиаминдиуксусная кислота
Цинк — один из важных биогенных элементов, постоянно присутствует в тканях растений и животных. Его содержание в большинстве организмов составляет 0,01%. Он входит в состав фермента карбоангидразы, который служит катализатором гидратации CO2. Цинк участвует в синтезе растительного гормона — индолилуксусной кислоты, выполняет существенную роль в синтезе молекул РНК, регулирует рост растений, влияет на образование некоторых аминокислот, повышает содержание растительных гормонов — гиббереллинов, влияет на развитие яйцеклеток и зародышей. При отсутствии цинка растения остаются недоразвитыми.
Бора содержится в растениях в среднем 0,005%. Он необходим для их нормального развития. Недостаток бора приводит к гибели ростовых (меристемных) клеток и к отмиранию ростовых почек. Черешки и листья при этом становятся хрупкими, снижается содержание АТФ, и нарушаются окислительно-восстановительные процессы.
Марганец — распространенный в природе элемент, является постоянной составной частью живых организмов. В растениях содержание марганца колеблется от сотых до десятитысячных долей процента. Некоторые растения (ряска, чилим) способны накапливать значительные количества марганца. Этот элемент активирует ряд ферментов, участвует в процессах дыхания, фотосинтеза, биосинтеза нуклеиновых кислот. Недостаток марганца вызывает некрозы — отмирание растительных тканей.
Кроме перечисленных, в состав растений входит ряд других микроэлементов. Некоторые из них способствуют росту или принимают участие в биохимических реакциях. Так, с окислительно-восстановительными процессами связаны ванадий, никель, мышьяк. Ряд элементов принимает участие в ферментативных реакциях: кобальт, кадмий, литий. В состав растений также входят элементы, биологическая роль которых выяснена еще недостаточно.
Элементы, постоянно входящие в состав растений, можно разделить на три группы по изученности, роли и значению для организмов: элементы, образующие основные ткани растения, входящие в состав биологически активных соединений (ферментов, витаминов, гормонов, пигментов) — они незаменимы для растений (I группа); элементы, принимающие участие в жизнедеятельности, но их роль недостаточно выяснена (II группа); элементы, присутствующие в растении как балласт, или их роль неизвестна (III группа). Такое деление элементов представлено в табл. 14.
Таблица 14 Содержание химических элементов в растениях.

I группа
II группа
III группа
Содержание (массовая доля) элементов в сухом веществе растений, %

C, O


> 10

N, H, Ca, K


1 - 10

Mg, Na, P, S, Cl


10‾ 1 – 1

Fe, Zn, Mn

Al
10‾ 2 - 10‾ 1

Cu, B
Sr, F, Br
Ba, Rb
10‾ 3 - 10‾ 2

Ni, V

Ti, Pb
10‾ 4 - 10‾ 3

I, Co, Ho, Se
Cd, As
Cr, Cs, Sn, Bi
l0‾ 5 - 10‾ 4


Li
Be, Ga, Ag, Sb, La, W, U
10‾ 6 - 10‾ 5


Hg
Au, Zr, Hf
< 10‾ 6

Содержание тех или иных элементов зависит не только от видовых особенностей растения, но и от состава среды, от концентрации и растворимости химических соединений. При избытке ряда необходимых веществ в воде они могут проявлять токсические свойства (Mg, B, Zn, Cu, Fe и др.). Излишнее количество даже такого важного компонента питания, как азот, ведет к нарушениям биохимических процессов. Симптомы отравления растения элементом часто совпадают с признаками недостатка этого же или другого элемента. Поэтому любыми видами минеральной подкормки следует пользоваться очень осторожно. Аквариум — это замкнутое пространство, и при неправильном внесении удобрений или микроэлементов концентрация какого-либо элемента может быстро выйти из пределов, полезных растению: добавка станет опасной для обитателей аквариума и даже для самих растений. Избыток макроэлементов может привести к бурному развитию водорослей и ухудшению биохимического режима аквариума.
Кроме воздействия на организмы, ряд элементов взаимодействует между собой, вступая в химические реакции и образуя неусваиваемые растениями соединения. Эти процессы быстро протекают в аквариумной воде, богатой продуктами разложения органических веществ. Фосфаты и сульфаты за короткий промежуток связывают ряд необходимых растению ионов металлов с образованием нерастворимого осадка.
Некоторые элементы являются антагонистами. Находясь в растворе и имея одинаковый по знаку заряд, они взаимно подавляют присущее каждому из них действие. Среди таких антагонистических пар можно назвать ионы натрия и калия, железа и марганца, кальция и магния.
Степень использования питательных веществ сильно зависит от pH среды, что мы уже видели на примере усвоения комплексных соединений железа. В кислой среде, когда pH меньше 6, поглощение катионов (Са2+, Mg2+, K+ и др.) затрудняется из-за антагонистического действия ионов водорода. Некоторые элементы (Fe, Al) в кислой среде имеют избыточную доступность, и, если в грунте их содержится слишком много, они могут оказывать токсическое воздействие на растения и рыб. При pH больше 7 возможно образование нерастворимого фосфата кальция, что приводит к ухудшению фосфорного обмена. В этих же условиях марганец переходит в четырехвалентные соединения, которые не усваиваются растениями. При pH выше 8 железо переходит в нерастворимые гидроксиды.
Наиболее благоприятным для большинства аквариумных растений следует считать значение pH 6,5 — 7,5, При такой кислотности воды большинство элементов находится в состоянии, доступном для растений, а также создаются благоприятные условия для усвоения углекислого газа. Значение pH аквариумной воды близкое к 7 устанавливается обычно при жесткости воды dGH от 6 до 10.
Для обеспечения гидрофлоры питанием достаточно только минеральных (неорганических) веществ. Из биогенных элементов растение создает свой организм, синтезирует витамины, гормоны, аминокислоты и другие сложные кислоты. Однако в питании растений могут участвовать и органические вещества, в основном те, которые содержатся в грунте. Они главным образом состоят из остатков отмерших и разлагающихся растительных и животных тканей. При разложении сложных органических веществ образуются более простые структуры, которые могут использоваться растением. При этом организм выбирает те элементы, которых недостаточно в питающей среде. Если применяется комплексное минеральное питание, содержащее все необходимые растению вещества, то органические соединения не нужны.
В ряде случаев в состав удобрений для аквариумных растений включаются витамины. Аквариумисты, добавляющие витаминные препараты в аквариумную воду, иногда наблюдают улучшение роста растений. Порой положительный эффект можно объяснить наличием некоторых микроэлементов, например кобальта в витамине В12. Поэтому такие добавки при достатке минерального питания не нужны: здоровое растение может создать для себя все необходимые витамины и другие биологически активные вещества. Добавки органических удобрений и витаминов аквариумистами могут применяться только в специальных случаях, Например, для создания необходимых условий для одного или нескольких растений.
АЗОТ — ПОЛЬЗА ИЛИ ВРЕД?
Азот — один из основных элементов, необходимых для животных и растений. Он входит в состав белков, являющихся частью растительных и животных клеток. Некоторые соединения азота в большой концентрации вредны для живых организмов, могут вызвать болезни и гибель рыб.
Азот образует простое вещество — газообразный азот, молекулы которого состоят из двух атомов N2. Этот газ без цвета и запаха является основным компонентом атмосферного воздуха, где объемная доля N2 равна 78%. Газообразный азот немного растворим в воде (в l00г H2O — 1,5 мл N2 при 20C). Этот газ химически и биологически инертен: он практически не вступает в химические реакции ни на воздухе, ни в растворе и не играет существенной роли в химических и биохимических процессах, протекающих в аквариуме. Азот — компонент многих соединений, играющих важную роль в процессах жизнедеятельности водных обитателей, Так, он входит в животные и растительные белки. Белки — органические полимерные вещества, состав которых можно изобразить следующим образом:


O

H

H

O

H

H

O

H

H






















…—
C

C

N

C

C

N

C

C

N
─…..

















R1



R2


R3





































где R1, R2, R3 — остатки различных органических аминокислот.
Без азота невозможен рост растений. Наряду с фосфором и калием, он необходим в больших количествах. Растения могут поглощать азот в виде простых неорганических соединений (аммиак, нитриты, нитраты) и превращать в более сложные органические (аминокислоты, белки). Животные, в том числе и рыбы, поглощают азот только в виде органических веществ (главным образом — белков) растительного происхождения или из тканей других животных.
В результате разложения экскрементов рыб и других аквариумных животных, остатков корма и растений, погибших организмов образуется неорганическое соединение азота — аммиак NH3 — газ с характерным резким запахом, хорошо растворимый в воде. Так, при температуре 20C в 1 л воды можно растворить до 700 л аммиака.
Аммиак в больших концентрациях — очень токсичное вещество. Он делает невозможным процесс дыхания. Рыбы ощущают концентрацию аммиака в воде 0,2 мг/л, а концентрация 1 мг/л для большинства аквариумных рыб смертельна.
Аммиак обладает способностью взаимодействовать с ионами водорода H+, находящимися в воде, иди с молекулами воды, образуя ионы аммония NH4+;
NH3 + H+ = NH4+
NH3 + H2O = NH4+ + ОН‾
В результате устанавливается химическое равновесие между молекулами аммиака и ионами аммония. Соотношение концентраций NH3 и NH4+ в воде зависит от ее кислотности: в кислой воде практически отсутствует аммиак; в нейтральной и слабощелочной NH3 есть, однако, содержание ионов NH4+ все еще невысоко; в щелочной среде концентрация аммиака резко возрастает. Количественное соотношение между аммиаком и ионами аммония в воде при различных pH показано на рис. 11. Особые неприятности аммиак может доставить аквариумистам, которые содержат африканских цихлид из озер Малави, Ньяса и Танганьика (pH должен составлять 7,5 — 9), и любителям морского аквариума (pH около 8,3).
Рис. 11. Соотношения между аммиаком и ионами аммония в воде различной кислотности при температуре 20оС
Ионы аммония значительно менее токсичны, чем аммиак. Для предотвращения отравления рыб аммиаком, необходимо подкислять воду (если это допустимо для обитателей) и поддерживать pH в интервале от 6 до 7. Для такого подкисления часто используют кислоты (уксусную, соляную, фосфорную) или торфяной настой и отвар. Использовать кислоты надо очень осторожно, постоянно контролируя значение pH. Во-первых, надо учитывать, что можно повысить кислотность очень резко, что губительно для рыб и многих растений. Во-вторых, кислота может начать реагировать с грунтом, содержащим известняк, и с растворимыми в воде гидрокарбонатами кальция и магния. При этом выделяется углекислый газ, который в больших концентрациях также токсичен для рыб.
Что делать в тех случаях, когда нельзя подкислять воду? Ведь многим аквариумным обитателям — африканским цихлидам, моллинезиям велиферам, морским животным и др. — требуется вода с щелочной реакцией. В этом случае надо принимать специальные меры, чтобы предотвратить отравление рыб аммиаком: содержание аквариума в чистоте; своевременное удаление остатков корма, экскрементов рыб, отмирающих листьев растений; подмена части воды (до 1/4, а иногда и более в неделю) на свежую. Эффективным средством защиты рыб от отравления аммиаком является фильтрация воды.
Надо отметить, что аммиак и ионы аммония не являются конечными продуктами разложения азотсодержащих веществ. Молекулы NH3 и ионы NH4+ могут окисляться, причем окисление протекает в два этапа. Вначале образуются нитрит-ионы NO2‾:
NH3 + 3/2O2 = NO2‾ + H+ + H2O
или
NH4++ 3/2O2 = NO2‾ + 2H+ + H2O
Образовавшиеся нитрит-ионы окисляются далее до нитрат-ионов NO3‾:
NO2‾ + 1/2O2 = NO3‾
Процессы окисления аммиака и ионов аммония могут происходить под воздействием химических окислителей (например, растворенного в воде кислорода), Однако такие реакции протекают медленно. Значительно быстрее окислительно-восстановительные реакции протекают под действием бактерий, существующих в аквариуме. Бактерии рода Nitrosomonas осуществляют процесс NH3 (NH4+) → NO2‾, а бактерии рода Nitrobacter — процесс NO2‾ → NO3‾.
Особенно быстро превращение аммиака, до нитрат—ионов происходит при использовании аквариумных фильтров. В простейших из них вода прокачивается через слой гравия или синтетического материала (поролон, мочалка из полимерных волокон). Многие считают, что эти устройства лишь механически фильтруют воду, освобождая ее от взвешенных твердых частиц, однако это не так. В фильтре, из-за Повышенной концентрации кислорода скапливаются и быстро размножаются бактерии родов Nitrisomonas и Nilrobacter, которые способствуют превращению аммиака и ионов аммония в нитриты и нитраты.
Нитриты и нитраты также оказывают токсическое действие на живые организмы. Особенно высока токсичность нитритов. Она даже выше, чем у аммиака: большинство пресноводных рыб погибает при концентрации ионов NO2‾ 0,5 мг/л. Длительное пребывание рыб в воде с концентрацией нитрит-ионов более 0,1 мг/л может привести к летальному исходу. Однако, как правило, нитриты не накапливаются в больших концентрациях в воде из-за их окисления до нитратов.
Нитраты — значительно менее токсичные соединения азота, чем аммиак и нитриты. Концентрация ионов NO3‾ может достигать 20 мг/л и даже больших значений. При этом рыбы живут в воде с таким содержанием нитратов достаточно долго и без видимого ущерба для здоровья. Обычно концентрации нитратов велики в так называемой старой воде. Раньше считалось, что такая вода наиболее подходит для аквариума; теперь это мнение изменено.
Несмотря на малую токсичность нитратов, ими нельзя злоупотреблять. Замечено, что в воде, богатой нитратами, рыбы (особенно мальки) растут медленнее, труднее размножаются, раньше теряют способность к размножению. Таким образом, желательно, чтобы концентрация нитратов в аквариумной воде не превышала 20 мг/л. Избыточное количество нитратов можно уменьшить, либо применяя фильтры с адсорбентами (активированным углем и др.), либо регулярно проводя частичную подмену воды. Сравнение токсичности аммиака, нитратов и нитритов приведено на рис. 12.
Рис. 12. Сравнительная характеристика токсичности соединений азота.
Мы исследовали состав аквариумной воды, при этом был проведен химический анализ образцов на содержание соединений азота — аммиака, нитратов и нитритов. Аквариумы объемом 100 л простояли около двух лет. Ежемесячно в них делалась уборка, а раз в две недели 1/4 часть воды заменялась на свежую, водопроводную (dGH 8—10). Аквариумы были густо засажены растениями (криптокорины, кабомбы, роталы, альтернантеры, роголистники и др.); освещение — две U-образные люминесцентные лампы по 30 Вт; рыбы — гуппи. В аквариуме без фильтрации концентрация аммиака составила (в различных пробах) от 0,02 до 0,1мг/л, нитритов — 0,05—0,12 мг/л, нитратов — 1,8—2,9 мг/л. В аквариуме с такими же условиями, но при наличии донного фильтра, пропускающего воду через слой гравия, содержание соединений азота было следующим: NH3 — 0—0,03 мг/л; NO2‾ — 0—0,05 мг/л; NO3‾ — 1,8—3,0 мг/л. Эти данные показывают, что регулярный уход за аквариумом позволяет поддерживать концентрацию токсичных веществ в допустимых пределах.
Все процессы, связанные с соединениями азота, протекающие в аквариуме, можно представить в виде схемы, изображенной на рис. 13.
Рис 13. Круговорот азота в аквариуме.
ЧЕМ ДЫШАТ РЫБЫ?
Все живые организмы нуждаются в кислороде. Этот газ они поглощают при дыхании. В воде, даже насыщенной кислородом (а не воздухом), при температуре 20С объемная доля кислорода составляет не более 1%.
Дыхание рыб в водной среде осуществляется главным-образом при помощи жабр: вода с растворенным кислородом проходит через рот в жабры, где растворенный кислород поглощается и поступает в организм. Степень поглощения кислорода из воды при таком способе дыхания очень высока и составляет до 30% (для сравнения: млекопитающие поглощают лишь до четверти вдыхаемого кислорода).
У некоторых рыб существуют и дополнительные органы дыхания: они поглощают кислород через кожу или при помощи специальных органов, характерных для отдельных видов, родов или семейств. Например, у рыб семейства Anabantidae, к которым относятся многие популярные представители аквариумной ихтиофауны (гурами, петушки, лялиусы, макроподы), имеется особый орган — жаберный лабиринт, позволяющий поглощать кислород из воздуха. Если эти рыбы не имеют возможности подняться к поверхности воды в течение нескольких часов, то они погибают.
Кислород, попадающий через жабры и другие органы дыхания в организм, поступает в кровь и разносится по всему телу рыбы. Он участвует в процессе окисления органических веществ. Эти окислительно-восстановительные реакции поставляют энергию для поддержания жизнедеятельности рыб.
Каковы источники кислорода в аквариумной воде? Главный из них, как и в природных водоемах, — естественный газообмен с окружающим воздухом. Этот газообмен улучшается, если в водоеме имеются волны, пороги, перекаты (в аквариумных условиях их заменяет принудительная аэрация воды при помощи помп или микрокомпрессоров). Значительное количество кислорода в процессе фотосинтеза поставляют растения. Растворенный в воде кислород поглощается рыбами и другими аквариумными животными и в ночное время растениями. Он расходуется также при разложении экскрементов, остатков растений и мертвых рыб.
Количество кислорода, которое необходимо рыбам, бывает различным и во многом зависит от температуры воды, вида и размера рыб, степени их активности и других факторов.
Температура воды влияет на содержание в ней кислорода: как известно, растворимость газов уменьшается при увеличении температуры жидкости (см. табл. 2). Обычно содержание кислорода в воде, контактирующей с атмосферным воздухом, меньше предельной растворимости, приведенной в табл. 2, и составляет 0,7 мл в 100 г воды при 15С, 0,63 мл — при 20С и 0,58 мл — при 25С. Это содержание кислорода вполне достаточно для аквариумных обитателей, т. к. установлено, что наиболее оптимальным для них содержанием O2 является от 0,55 мл до 0,7 мл в 100 г воды.
В табл. 12 показано на примере золотых рыбок, какое количество кислорода необходимо для нормального дыхания в активном состоянии рыб и при отдыхе.
Таблица 12. Количество кислорода, необходимое для золотых рыбок

Температура воды
Требуемое количество кислорода в активном состоянии, мл на 1 кг массы рыбы в час
Требуемое количество кислорода при отдыхе, мл на 1 кг массы рыбы в час
Требуемое количество воздуха для аэрации аквариума, л на 1 кг массы рыбы в час

5
30
8
1,3

15
110
50
9,0

25
255
140
32,0

35
285
225
60,0

С увеличением температуры воды содержание в ней кислорода падает, а потребность рыб в нем возрастает. Это вызывает необходимость во многих случаях устанавливать устройства для аэрации воды в аквариуме. С учетом требуемого количества кислорода подбираются воздушные компрессоры. Например, многие распространенные аквариумные компрессоры имеют производительность 30 л/ч (по каждому каналу). Как видно из табл. 12 (см. последнюю колонку), такой производительности достаточно для обеспечения нормального дыхания золотых рыбок общей массой 1 кг. При температуре 15C число рыб, которых обеспечит воздухом такой компрессор, возрастает в 3—3,5 раза.
Золотые рыбки требовательны к содержанию кислорода. У многих мелких тропических рыб, которые содержатся в аквариумах, потребность в кислороде значительно ниже. Например, многих харациновых рыб (неоны, родоетомусы, миноры и др.) можно успешно
содержать в аквариумах без специальной аэрации. Как правило, наиболее требовательные к содержанию кислорода рыбы живут в природе в реках и ручьях с быстрым течением, имеющих перекаты, пороги, водопады. Рыбы, обитающие в медленно текущих реках (особенно с водой, богатой органическими веществами), небольших прудах и озерах, обычно нуждаются в меньшем содержании кислорода в воде.
Интересен вопрос о роли аквариумных растений в насыщении воды кислородом. Некоторые аквариумисты преувеличивают эту роль. Действительно, в процессе роста аквариумных растений (на свету) они выделяют кислород, однако его количество, как правило, не превосходит то, что поступает в воду за счет естественного газообмена с воздухом.
В темное время суток растения поглощают кислород из воды. Поэтому, несмотря на то, что активность рыб понижается, и они требуют меньше кислорода, может возникнуть его нехватка. Рыбы могут погибнуть от удушья в гуще растений. Такое явление наблюдается в ночное время в аквариумах с высокой плотностью посадки водных растений (при наличии растений, плавающих на поверхности). В таких аквариумах необходима аэрация, особенно в ночное время.
Аэрация воды в аквариумах обычно осуществляется при помощи микрокомпрессоров через распылители из пористых материалов: песчаника, керамики, пористых металлов. Насыщение воды кислородом осуществляется при использовании аквариумных фильтров, об устройстве и работе которых будет рассказано в отдельной главе.
КИСЛОТА ИЛИ ЩЕЛОЧЬ?
Рассказывая об электролитах, мы уже упоминали понятие кислота и щелочь. Отличительная особенность кислот — создание в растворе повышенной концентрации ионов водорода H+ (за счет электролитической диссоциации). Именно эти ионы придают кислый вкус растворам и обусловливают целый ряд других свойств. Чем больше в растворе ионов водорода, тем более кислой будет вода. Главная особенность щелочей — увеличенное по сравнению с чистой водой содержание гидроксид-ионов ОН‾. Чем выше концентрация этих ионов, тем более щелочным является раствор.
Можно ли количественно оценить кислотные и щелочные свойства воды и этих растворов? Можно. Удобнее всего использовать для этого водородный показатель, который в аквариумной литературе иногда называют показателем активной реакции воды. Водородный показатель обозначают символом pH. Его легко вычислить, если известна молярная концентрация ионов водорода в растворе c(H+) (в моль/л). Тогда
pH = -lg c(H+) (7)
т. е. водородный показатель — это десятичный логарифм молярной концентрации ионов водорода, взятый со знаком минус.
Чему равен водородный показатель в чистой воде? Его легко рассчитать, если воспользоваться рассмотренным нами понятием ионное произведение воды. Как было сказано, в чистой воде концентрации ионов H+ и OH‾ равны, т. е. c(H+) = c(ОН‾). Учитывая, что c(H+) • c(ОН‾) = 10‾ 14 (см. формулу 6), получаем:
c(H+) • c(ОН‾) = (10‾ 14)1/2 =10‾ 7 моль/л.
Теперь можно рассчитать водородный показатель
pH = - lg c(H+); pH = - lg 10‾ 7 = 7.
Таким образом, в чистой воде значение водородного показателя равно 7. Водная среда с таким значением pH называется нейтральной.
Теперь предположим, что в воду добавили кислоту, например, соляную HCl. Кислота диссоциирует на ионы:
HCl = H+ + Cl‾
Из уравнения следует, что в растворе увеличивается концентрация ионов H +, причем тем сильнее, чем больше мы добавим кислоты. Следует отметить, что концентрация ионов ОН‾ при этом уменьшается за счет образования воды из ионов:
OH‾ + H+ = H2O
Как изменится pH при этом? Очевидно (см. формулу 7), что pH будет уменьшаться, причем он будет тем меньше, чем больше концентрация кислоты. Таким образом, в кислой среде значение pH меньше 7.
Если в воде растворить щелочь, например, NaOH, то в результате процесса диссоциации
NaOH = Na+ + ОН‾
в растворе увеличится концентрация ионов ОН‾. Учитывая, что произведение c(H+) • c(OH‾) должно оставаться постоянным (ионное произведение воды), делаем вывод: концентрация ионов H+ падает, а pH растет, т. е. становится больше 7. На рис. 3 показана шкала pH в водных растворах.
Рис. 3. Шкала pH в водных растворах
В аквариумной литературе различные интервалы pH получили следующие названия: pH < 3 — сильно — кислая вода; pH 3—5 — кислая; pH 5—б — слабокислая; pH 6—7 — очень слабокислая; pH 7 — нейтральная; pH 7—8 — очень слабощелочная; pH 8—9 — слабощелочная; pH 9—10 щелочная и pH > 10 — сильнощелочная.
Пример. Водородный показатель воды в двадцатилитровом аквариуме равен 7. Рассчитайте объем 0,5% —ной соляной кислоты, которую надо внести в воду, чтобы pH стал равным 6. Плотность раствора кислоты принять равным 1 г/л.
Решение. Определяем концентрацию ионов H+ в воде, которую надо приготовить. Используя формулу (7), получаем:
c(H+) = 10‾ pH; c(H+) = 10‾ 6 моль/л.
Т, к. при диссоциации одной молекулы кислоты образуется один ион водорода (HCl = H+ + Cl‾), можно считать, что концентрация кислоты, которую надо создать в растворе, должна быть равна концентрации ионов водорода: c(HCl) = c(H+) = 10‾ 6 моль/л (концентрацией ионов водорода, образующихся при диссоциации воды, можно пренебречь),
По формулам (4) и (5) определяем массу HCl, которая должна содержаться в растворе:
m(HCl) = c(HCl) • V • M(HCl); m(HCl) = 10‾ 6 моль/л • 20 л • 36,5 г/моль=7,3 • l0‾ 4 г.
Рассчитываем массу 0,5% — ного раствора кислоты, в котором содержится 7,3 • 10‾ 4 г HCl. По формуле (2):
m =
m(HCl) • 100
;
m =
7,3 • 10‾ 4 г • 100
= 0,146 г.


w(HCl)


0,5



Наконец, зная, что плотность раствора равна 1 г/мл, определяем, что в аквариум надо внести 0,146 мл 0,5% —наго раствора HCl.
Следует отметить, приведенный расчет справедлив лишь для совершенно чистой воды. Например, если в аквариум налить дистиллированную воду, то, внеся рассчитанное количество кислоты, можно достичь требуемого значения pH. Если в аквариуме используется водопроводная вода или вода из природных водоемов, в которых растворены различные соединения, внесение рассчитанного количества кислоты не приведет к желаемому сдвигу pH. В ряде случаев необходимое изменение pH не достигается даже при внесении кислоты в десятикратном размере по сравнению с рассчитанным количеством. Это происходит потому, что вода с растворенными в ней веществами обладает буферными свойствами, т. е. является буферным раствором.
Буферные растворы — это такие растворы, pH которых почти не зависит от разбавления и почти не меняется при добавлении к ним небольших количеств кислот и щелочей. Наиболее распространенные буферные растворы содержат, как правило, слабую кислоту (CH3COOH, H2СO3, H3PO4 и др.) и соль этой же кислоты. Например, буферными свойствами обладают смеси кислых и средних солей одной кислоты или смеси двух кислых солей, например NaHCO3 + Na2CO3, NaH2PO4 + Na2HPO4. Смеси небольших равных количеств NaH2PO4 и Na2HPO4 (или соответствующих калиевых солей) позволяют поддерживать реакцию воды, близкую к нейтральной (pH в интервале от 6,5 до 7,5).
Так называемый аммиачный буфер образует водный раствор аммиака и какая-нибудь соль аммонии: NH4ОН + NH4Cl. Буферные свойства аквариумной воды обусловлены содержанием в ней углекислоты H2СO3 и ее кислых солей Ca(HCO3)2 и Mg(HCO3)2. Буферные растворы находят применение в тех случаях, когда надо поддержать определенное значение pH. Они могут быть использованы аквариумистами при лечении рыб, обеззараживании водной растительности, при борьбе с вредителями аквариума, проведении химического анализа аквариумной воды и т. д. О приготовлении буферных растворов можно прочитать в литературе по аналитической химии (см. Лурье Ю. Ю. Справочник по аналитической химии. М.: Химия, 1979).
Какова кислотность воды, в которой могут жить рыбы и водные растения? Жизнь в воде возможна в довольно широком интервале pH: некоторые микроорганизмы могут существовать в сильнокислой и сильнощелочной среде. В природных водоемах значение pH колеблется в интервале от 3,2 до 10,5. Если говорить об аквариумных рыбах, то интервал pH, пригодный для их содержания, несколько уже. В табл. 6 приведены значения pH некоторых природных водоемов в различных частях света. Во всех перечисленных водоемах водятся рыбы, представляющие интерес для аквариумистов.
Таблица 6 Кислотность воды в некоторых природных водоемах.
Название водоема
Место расположения водоема
Интервал значений pH

р. Маморе
Ю. Америка: Боливия
6,0—8,0

р. Чучунак
Ц. Америка: Панама
7,0—7,4

р. Ярдайн
Австралия: п-ов Кейп-Йорк
5,2—6,6

оз. Танганьика
Африка: Танзания, Заир
8,7—9,0

р. Ньонг
Африка: Камерун
5,7—6,2

р. Верде
С. Америка: Мексика
6,9—7,3

р. Борай Пет
Азия: Таиланд
5,8—6,8

Рис. 4. Интервалы pH, в которых могут жить некоторые аквариумные рыбы
Итак, для многих аквариумных рыб подходит pH от 5 до 9. Однако для различных видов наиболее благоприятный интервал кислотности еще уже. На рис. 4 показаны интервалы pH, в которых оптимально чувствуют себя различные представители аквариумной ихтиофауны. Рыбы достаточно хорошо адаптируются к изменению внешних условий, в том числе и к кислотности в достаточно широких интервалах. Такая адаптация происходит наиболее полно при выращивании в воде определенного состава нескольких поколений рыб. Поэтому возможно содержание, а иногда и разведение рыб, при значениях pH, которые выходят за рамки приведенных на рис. 4 интервалов, хотя наилучшие результаты достигаются при определенном значении водородного показателя. На рис. 5 показана экспериментально установленная зависимость успешного спаривания петушков (Betta splendens) от кислотности воды. Наилучшие результаты были получены при значении pH близком к 7.
Рис. 5. Зависимость доли успешных спариваний петушков от pH
Если вы приобрели новых аквариумных рыб, то желательно создать им условия, к которым они привыкли. Для этого бывает необходимо изменить pH аквариумной воды. Если надо повысить кислотность (уменьшить pH), можно воспользоваться кислотами. Лучше всего применять уксусную и фосфорную кислоты. Можно использовать серную и соляную кислоты, однако с большой осторожностью, т. к. при передозировке произойдет резкое изменение pH. В качестве веществ, дающих кислую реакцию, используют дигидрофосфаты калия, натрия или кальция: КH2PO4, NaH2PO4, Ca(H2PO4)2. Иногда для подкисления воды применяют настой или отвар торфа, ольховых шишек, которые содержат органические кислоты.
Щелочность можно поднять (увеличить pH), используя растворы щелочей (NaOH, КОН), однако лучше воспользоваться солями, имеющими щелочную реакцию: питьевой содой или гидрокарбонатом натрия NaHCO3, содой или карбонатом натрия Na2CO3.
Может возникнуть вопрос, почему некоторые соли (например, указанные здесь NaHCO3 и Na2CO3) используются для изменения pH? Оказывается, водные растворы ряда солей имеют щелочную или кислую реакцию вследствие гидролиза соли, т. е. взаимодействия ее с водой. Например, соль NaHCO3 в воде диссоциирует на ионы:
NaHCO3 = Na+ + HCO3‾
Кислотный остаток слабой угольной кислоты HCO3-взаимодействует с водой:
НСO3‾ + H2O= H2СO3 + ОН‾
в результате чего в воде накапливаются гидроксидионы ОН‾, обеспечивающие щелочные свойства этой соли.
Аналогичные процессы протекают в растворе Na2CO3:
диссоциация: Na2CO3 = 2Na+ + СO32‾
гидролиз: СO32‾ + H2O = HCO3‾ + ОН‾
причем во втором примере гидролиз протекает в большей степени, чем в случае NaHCO3. Поэтому из растворов двух солей (NaHCO3 и Na2CO3) последний будет обладать более высоким значением pH.
Изменение кислотности воды проводят очень осторожно: небольшое количество вещества надо растворить в воде из аквариума (1—3 л) и полученный раствор добавлять при перемешивании небольшими порциями. Для рыб безопасно изменение pH не более чем на 0,2 единицы в течение часа.
Часто можно наблюдать такое явление, что первоначально удается изменить кислотность аквариумной воды, однако довольно быстро (иногда уже через сутки) pH принимает прежнее значение. Это говорит об устойчивом равновесном состоянии аквариумной системы. Чтобы изменить кислотность воды в таком аквариуме, придется провести в нем более значительные изменения: заменить грунт, поменять воду, уменьшить число рыб. В аквариумах, так же как и в природных водоемах, кислотность не остается постоянной: измеренные значения pH могут оказаться различными в разное время суток, при изменении внешних условий (а в природных водоемах — в различное время года). С чем связаны такие колебания pH? Одна из важнейших причин, влияющих на кислотность аквариумной воды — изменение содержания в воде углекислого газа, который хорошо растворяется в ней с образованием угольной кислоты:
СO2 + H2O = H2СO3
Эта кислота диссоциирует с образованием ионов водорода, обусловливающих кислую реакцию воды:
H2СO3 = H+ + HCO3‾
Можно назвать три основных источника углекислого газа в аквариуме: растворение его из воздуха, с которым контактирует вода (или которым продувается аквариум); выделение при дыхании рыб и других животных; выделение углекислоты водными растениями в ночное время. Изменение pH, связанное с CO2, может быть достаточно сильным. Например, если в помещении в открытой банке оставить дистиллированную воду, то ее pH обычно принимает значение 5,7— 5,8. Если воду специально насытить углекислым газом, то можно достигнуть pH 4,8.
Если содержание углекислого газа в воде уменьшается, то pH растет (т. е. кислотность уменьшается). Такие процессы могут происходить под воздействием растений, которые на свету поглощают CO2 из воды, Если грунт аквариума содержит карбонаты (CaCO3, CaCO3), то они также реагируют с растворенным CO2. поглощая его из воды и подщелачивая ее:
CO2 + CaCO3 + H2O = Ca(HCO3)2.
Существует еще один фактор, оказывающий существенное влияние на кислотность аквариумной воды. В аквариуме всегда имеются бактерии Nitrosomonus, участвующие в разложении азотосодержащих H2O остатков, выделяемых рыбами. В процессе жизнедеятельности бактерий выделяются ионы водорода H+, и происходит подкисление воды. Особенно интенсивно этот процесс идет при использовании аквариумных фильтров. Подкисление воды будет тем сильнее, чем больше рыб, выделяющих соединения азота, содержится в аквариуме.
Процессы, влияющие на кислотность аквариумной воды, представлены на рис. 6.
Рис. 6 Влияние различных факторов на кислотность воды в аквариуме
Изменения кислотности воды в аквариуме (особенно резкие) и смещение pH за пределы оптимальных интервалов нежелательны, т. к. могут привести к заболеванию рыб. При этом рыбы чешутся о грунт и растения, ведут себя беспокойно, при плавании совершают рывки, выпрыгивают из воды. При появлении этих симптомов необходимо нормализовать значение pH в аквариуме.
Чтобы не происходило резких колебаний кислотности аквариумной воды, не следует перенаселять аквариум рыбами, растениями и другими обитателями. Рекомендуется регулярно (еженедельно) подменивать воду и постоянно контролировать pH.
Для измерения кислотности воды в аквариуме используют индикаторы — вещества, которые изменяют окраску в зависимости от pH. Например, индикатор метиловый оранжевый в растворе кислоты приобретет красный цвет, а в растворе щелочи — желтый. Фенолфталеин в растворе щелочи окрашивается в малиновый цвет, а в кислоте он бесцветен. Такие индикаторы позволяют определить, является ли раствор кислым или щелочным.
Чтобы определить значение pH раствора, можно использовать специальную индикаторную бумагу. Эта бумага пропитана смесью различных индикаторов. Значение pH устанавливается путем сравнения цвета бумаги, смоченной исследуемой водой, со стандартной цветной шкалой. Точность определения pH при помощи такой бумаги невелика: обычно она составляет 0,3— 0,5 единиц pH. При отсутствии навыка в использовании индикаторной бумаги ошибка может быть велика,
Значительно точнее позволяет измерить водородный показатель набор H. И. Алямовского, который также основан на сравнении цветов. При этом цвет исследуемой воды с добавленным индикатором сравнивается с окраской стандартных растворов, находящихся в запаянных ампулах. Набор позволяет определить pH с точностью 0,1—0,2 единиц pH, что вполне достаточно для любителя — аквариумиста. Разнообразные наборы для определения pH предлагают иностранные и отечественные фирмы.
Наиболее точным методом определения pH аквариумной воды является использование электронных приборов — pH-метров. На рис. 7 показана принципиальная схема измерения. В стакан с исследуемым раствором (1) погружают два электрода, входящие в комплект pH-метра: стеклянный электрод (2) и хлорсеребряный электрод сравнения (3). Электроды соединены с pH-метром (4): электрический сигнал с них поступает в прибор. Между стеклянным электродом и электродом сравнения возникает разность потенциалов E, которая связана со значением водородного показателя. pH-метр построен по принципу вольтметра с высоким входным сопротивлением: он измеряет значение разности потенциалов Е. Шкала прибора отградуирована в единицах pH. Электронные pH-метры, если они хорошо настроены, позволяют измерять водородный показатель с точностью 0,01 — 0,1 единицы pH, а иногда и выше (в зависимости от марки прибора).
Рис.7. Схема измерения pH при помощи pH-метра
Определение водородного показателя
Достаточно точно водородный показатель (рН) определяется при помощи набора Н. И. Алямовского. Эти наборы выпускаются для определения рН в различных сельскохозяйственных объектах (вода, почва) и продаются в магазинах. В набор входят запаянные пробирки с цветными растворами, каждый из которых соответствует определенному значению рН: от 4,0 до 8,0. Этого интервала вполне достаточно для аквариумных целей. В наборе также имеются: пробирка такого же диаметра, как и пробирки с цветными растворами, для проведения анализа; пипетка для отбора пробы воды (5 мл); комбинированный индикатор и пипетка для отмеривания индикатора (0,3мл),
Ход определения. Отмеряют 5 мл анализируемой воды и помещают в пробирку. Малой пипеткой набирают 0,3 мл комбинированного индикатора и также вносят в пробирку. Пробирку слегка потряхивают.
Затем определяют рН исследуемой воды, сравнивая окраску жидкости в пробирке с окраской индикаторных растворов. Эту операцию проводят при хорошем освещении, положив за пробирки в качестве фона белую бумагу. Если окраска жидкости в пробирке является промежуточной между окраской эталонных растворов, то рН анализируемой жидкости имеет среднее значение. Такой метод позволяет проводить определение с точностью до 0,1 рН.
Раствор универсального индикатора надо периодически проверять. Для этого используют набор Стандарт—титры, содержащий ампулы с веществами для приготовления буферных растворов. Одна ампула из набора растворяется в дистиллированной воде в мер — ной колбе на 1 л, этот раствор имеет определенное значение рН. Надо измерить это значение при помощи набора Алямовского и таким образом проверить годность универсального индикатора.
Набор Алямовского, позволяющий определить рН и интервале от 5 до 8, аквариумист может приготовить самостоятельно. Для этого необходимо иметь 17 пробирок (лучше с небольшим запасом) одинакового диаметра, 16 из которых снабжены пробками.
Для приготовления цветной шкалы потребуются следующие реактивы: хлорид железа (III) FeCl3, хлорид кобальта (II) CoCl2 • 6H2O, хлорид меди CuCl2 • 2H2O и сульфат меди CuSO4 • 5Н2О.
Надо приготовить 1%-ный раствор соляной кислоты, который используется в качестве растворителя. В четыре мерные колбы на 200 мл вносят: 9,0 г FeCl3 • 6H2O — в первую; 11,9 г CoCl2 • 6Н2О — во вторую; 80 г CuCl2 • 2Н2O — в третью и 62,5 r CuSO4 • 5Н2О — в четвертую. Растворяют соли в 1%-ной соляной кислоте и ею же доводят объем до метки в мерной колбе. Растворы используют для приготовления стандартных эталонных растворов в соотношениях, приведенных в табл. 23, Пробирки с эталонными растворами тщательно закупоривают.
Для приготовления комбинированного индикатора необходимы индикаторы метиловый красный и бромтимоловый синий. В начале готовят раствор А: 0,04 г метилового красного растереть в 6 мл 0,01М раствора NaOH; смесь смыть дистиллированной водой в мерную колбу на 100 мл, добавить 20 мл этилового спирта и довести водой до метки. Раствор Б: 0,01 г бромтимолового синего растереть с 3,7 мл 0,01М раствора NaOH, смыть в мерную колбу на 50 мл, добавить 10 мл этилового спирта и довести водой до метки. Затем оба раствора сливают вместе. Индикатор готов.

Таблица 23 Требуемые объемы растворов для приготовления эталонной цветной шкалы.

рН, которому соответствует эталон
FeCl3
CoCl2
CuCl3
CuSO4
Дистиллированная
вода

5,0
2,80
5,25
-
-
1,95

5,2
4,00
3,85
-
-
2,15

5,4
4,70
2,60
-
-
2,70

5,6
5,55
1,65
-
-
2,80

5,8
5,85
1,35
0,05
-
2,75

6,0
5,50
1,30
0,15
-
3,05

6,2
5,50
1,40
0,25
-
2,85

6,4
5,00
1,40
0,40
-
3,20

6,6
4,20
1,40
0,70
-
3,70

6,8
3,05
1,90
1,00
0,40
3,65

7,0
2,50
1,15
1,15
1,05
3,40

7,2
1,80
2,10
1,75
1,10
3,25

7,4
3,60
2,20
1,80
1,90
2,50

7,6
1,10
2,20
2,25
2,20
2,25

7,8
1,05
2,20
2,20
3,10
1,45

8,0
1,00
2,20
2,00
4,00
0,70

Наиболее точный метод измерения рН основан на использовании электронных рН-метров или иономеров. Какое оборудование требуется для этих измерений?
1. Электронный прибор. Чаще всего аквариумисты используют выпускавшиеся ранее рН-метры, списанные из лабораторий. Это приборы марок ЛПУ-01, ЛПМ-60М, рН121, рН340 и рН673. Можно использовать иономеры, например, И-115, ЭВ-74.
2. Стеклянный электрод. Эти электроды входят в комплект рН-метров, а также выпускаются отдельно. Для аквариумистов подходят стеклянные электроды марки ЭСП-43-07, которые рассчитаны на температуру от 0 до 40 С и позволяют проводить измерения от 0 до 12 рН.
Со стеклянным электродом надо обращаться очень осторожно: даже несильный удар по нему может вызвать образование микротрещин на стекле, из-за чего меняется электрическое сопротивление стекла и измерение становится неточным.
Стеклянный электрод надо хранить опущенным в дистиллированную воду или разбавленный раствор соляной кислоты. Если электрод подсох, его следует вымачивать в воде в течение нескольких суток (это относится и к новому электроду).
3. Хлорсеребряный электрод сравнения. Этот электрод также включается в комплект рН-метров, но может быть приобретен и отдельно (например, марки ЭВЛ-1МЗ и др.). Новый электрод заполняют насыщенным раствором хлорида калия KCl. Раствор заливают через отверстие на боковой поверхности электрода, после чего отверстие закрывается пробочкой. Заполненный электрод надо прокипятить 30-40 минут в дистиллированной воде. Подготовленный хлор — серебряный электрод хранят в растворе хлорида калия или дистиллированной воде.
4. Держатель для электродов и стаканчик для измерений. Надо взять небольшой стаканчик или баночку (40-100 мл), из пенопласта толщиной 0,5—1 см вырезать крышку, в которой просверлены отверстия для стеклянного и хлорсеребряного электродов. Когда прибор находится в нерабочем состоянии, в стаканчик (баночку) наливают дистиллированную воду, погружая в нее электроды.
Для закрепления электродов можно использовать также различные штативы или датчики, входящие в комплект некоторых рН-метров (например, датчик Д1-02).
Набор стандарт-титров для рН-метрии. Этот набор используется для приготовления буферных растворов с известными значениями рН. При помощи этих растворов, периодически проводится настройка приборов.
Подготовка рН-метра (мономера) и проведение измерений. Подготовка прибора заключается во включении питания, после чего он должен прогреться 30— 60 минут. Стеклянный электрод подключается к клемме Изм, а хлорсеребряный электрод — к клемме Всп, При настройке прибора по буферным растворам необходимо поместить электроды в стаканчик с раствором и установить известное значение рН, пользуясь ручками настройки. Подробнее эта операция описана в инструкции к рН-метру. Контроль рН-метра желательно проводить перед каждым измерением или серией измерений, желательно использовать буферный раствор, рН которого близок к измеряемому. Аквариумисту наиболее часто придется иметь дело с буферным раствором, содержащим дигидрофосфат калия и гидрофосфат натрия (0,025М KH2PO4 + 0,025М Na2HPO4). Этот раствор при температуре 20 С имеет рН 6,88, а при 25 С — 6,86.
Измерение показателя редокс-потенциала
Для измерения показателя редокс-потенциала (rH2)необходим рН-метр, который может работать в режиме измерения потенциала. Можно проводить измерение потенциала при помощи вольтметра с большим входным сопротивлением. Однако в этом случае потребуется также измерение рН воды каким-то способом, т. к. водородный показатель нужен для расчета rH2.
Чтобы рассчитать показатель rH2, необходимо измерить потенциал платинового микроэлектрода в исследуемой воде или растворе. Платиновый микроэлектрод (например, марки ЭПВ-1, ЭТПЛ-01М и др.) входит в комплект прибора. Измерение проводится так же, как и измерение рН, лишь стеклянный электрод заменяется платиновым, и рН—метр переключается в режим измерения потенциала.
Используя измеренное значение потенциала платинового микроэлектрода, а также значение рН воды или раствора, можно рассчитать показатель окислительно-восстановительного потенциала по формуле:
rH2 =
EЭКСП + 0,2
+ 2pH


0,029


где EЭКСП, — экспериментально определенное значение потенциала платинового микроэлектрода относительно хлорсеребряного электрода сравнения, выраженное в вольтах (В).
Измерение электропроводности воды
Электропроводность характеризует общее содержание растворенных солей в воде (в том числе и тех, которые обусловливают жесткость воды). Прежде, чем рассказать об измерении электропроводности воды, скажем о распространенной ошибке, часто встречающейся в аквариумной литературе.
Для характеристики воды необходимо знать не электропроводность S, а удельную электропроводность λ, которая относится к единице длины проводника (в нашем случае — к 1 см слоя воды или раствора). Значение 5 измеряется в сименсах (См) или микросименсах (мкСм), а λ — в мкСм/см.
Для измерения удельной электропроводности раствора разработано много приборов и измерительных ячеек. Достаточно простой самодельный прибор для определения электропроводности воды предложен аквариумистом И. И. Ванюшиным (журнал Рыбное хозяйство, 1990г, № 5, стр. 66 — 67). Мы расскажем об этой конструкции, внеся необходимые уточнения и дополнения.
Прежде всего, надо приготовить измерительный сосуд с двумя угольными электродами (графитовые стержни от батареек диаметром 6 мм). Схема такого сосуда приведена на рис. 19. Сам сосуд можно склеить из органического стекла. Электроды надо хорошо закрепить при помощи водостойкого клея. Размеры ячейки могут быть изменены при изготовлении.
На рис. 20 приведена схема прибора для измерения электропроводности, работающего от источника питания с напряжением 9 В (батарейка типа Крона или две плоские батарейки).
Принцип работы прибора состоит в следующем: он присоединяется к электродам измерительного сосуда (например, с помощью зажимов типа крокодил), в который налита исследуемая вода. Если в мосте сопротивлений (R5, R6, R7, RX) нет равновесия, то возникают колебания звуковой частоты, которые можно слышать в телефоне. Вращая ручку переменного сопротивления R7, добиваются минимального уровня шума в телефоне. Этому положению будет соответствовать условие R7 = RX,
Рис. 19. Сосуд для измерения электропроводности воды (Э — графитовые электроды)
Рис. 20. Схема прибора для измерения электропроводности воды
Детали:
транзисторы VT1, VT2 — КТ315; конденсаторы С1, СЗ, С4 — 0,1 мкФ, С2 — 0,22 мкф; сопротивления R1, R2 — 3,9 кОм, R3 — 22 кОм, R4 — 12 кОм, R5, R6 — 1 кОм, R7 (переменное) — 1...2 кОм, R8 — 150 кОм, RX — измеряемое сопротивление (вода); H1 — контрольная лампочка на 9 В; трансформатор Т1 — выходной звуковой от транзисторного приемника с соотношением, обмоток L1:L2 = 4:1; телефон В1 — с сопротивлением 900...1600 Ом; выключатель S1
Прибор (точнее переменный резистор R7) необходимо отградуировать в значениях сопротивления. Для этого вместо измерительного сосуда к нему надо подключить постоянное электрическое сопротивление и отметить положение ручки R7, которое ему соответствует.
Для градуировки можно рекомендовать следующие сопротивления: 1 кОм (электропроводность 1000 мкСм), 4 кОм (250 мкСм), 10 кОм (100 мкСм). Можно взять и другие сопротивления, при этом надо учитывать, что значение электрического сопротивления (R) и электропроводности (5) взаимосвязаны:
R =
1
(21)


S



Для того, чтобы точнее определить удельную электропроводность, нужно знать постоянную сосуда для измерения СX. Приготовьте 0,01 М раствора хлорида калия (KCl) и измерьте его электросопротивление RKCl, (в кОм) в приготовленной вами ячейке, как рассказано выше. Постоянная сосуда определяется по формуле:
CK =
RKCl • λKCl
(22)

где λKCl, — удельная электропроводность 0,01М раствора KCl при данной температуре в мкСм/см, приведенная в табл. 24.
Теперь, если вы измерили сопротивление образца раствора или воды RX (в кОм), то удельная электропроводность находится по формуле:
λ =
CK / RX
(23)

Полученное значение электропроводности будет соответствовать температуре 20 С. Если температура воды другая, то измеренное значение надо умножить на поправочный коэффициент (эти коэффициенты приведены в табл. 25). Тогда результат будет приведен к температуре 20 С.
Электропроводность характеризует общую соленость воды. Однако исследование гидрохимических свойств многих природных и аквариумных вод показывает, что по значению электропроводности можно приблизительно определить общую жесткость воды dGH, пользуясь калибровочным графиком, приведенным на рис. 21.
Определив удельную электропроводность воды, отметьте это значение на вертикальной шкале и проведите горизонтальную линию до калибровочной кривой. Из точки пересечения этой линии с кривой проведите вертикаль до шкалы жесткости, определив значение dGH. Еще раз подчеркиваем, что это лишь приближенный метод определения общей жесткости воды.
Таблица 24 Удельная электропроводность 0,01 М водного раствора хлорида калия
Температура, С
15
16
17
16
19
20

λKCl
1147
1173
1199
1225
1251
1278









Температура, С
21
22
23
24
25


λKCl
1305
1332
1359
1386
1447


Таблица 25 Поправочные коэффициенты для электропроводности при различной температуре
Температура, С
12
13
14
15
16

Поправочный коэффициент
1,213
1,182
1,151
1,132
1,095








Температура, С
17
18
19
20
21

Поправочный коэффициент
1,071
1,2046
1,023
1,000
0,979








Температура, С
22
23
24
25
28

Поправочный коэффициент
0,958
0,937
0,919
0,901
0,840








Температура, С
27
28
29
30


Поправочный коэффициент
0,810
0,790
0,770
0,750



Рис. 21. Калибровочная кривая для приблизительного определения жесткости воды (dGH) no удельной электропроводности. Точки — экспериментальные значения для различных природных вод, по которым построена кривая
ПОЧЕМУ РАСТЕТ КАБОМБА?
Мы уже много говорили о роли различных химических веществ, содержащихся в воде, в жизни водных организмов. Как же эти вещества используются гидробионтами? В этой главе мы расскажем о роли химических веществ в развитии аквариумных растений.
Проделайте простой опыт. Возьмите какое-нибудь водное растение, например, кабомбу и поместите в банку с рыбками. Наблюдайте за растением ежедневно. Вы увидите, что оно достаточно быстро увеличивается в размерах, растет на глазах. При этом видимых изменений в воде не происходит. Почему же растет кабомба? В процессе жизнедеятельности во всех биологических объектах происходит преобразование одного вида энергии в другой. Некоторые организмы превращают заранее накопленную энергию химических связей, потребляя ее в виде пищи, в другие необходимые для них виды, Это может быть механическая, осмотическая, тепловая и снова химическая. Все живые клетки преобразуют энергию в ходе сложных биохимических процессов.
Жизнедеятельность клеток сопровождается процессом дыхания, т. е. расщеплением: питательных веществ и выделением запасенной в них энергии, которая используется для выполнения различных функций.
Способ получения организмами питательных веществ, необходимых для жизни и используемых при дыхании, делит их на гетеротрофные — использующие для своего питания готовые органические соединения и автотрофные — способные синтезировать необходимые им органические вещества из неорганических соединений.
Большинство растений, содержащихся в аквариуме, относятся к автотрофам, получающим все необходимые для жизни вещества из воды и частично из грунта. Других источников питания у них нет. Поэтому для их правильного культивирования особенно важны знания гидрохимии, чтобы сознательно управлять процессом питания, а также знать, как достигнуть того, чтобы нашим зеленым питомцам было достаточно всех необходимых веществ.
Стебли и листья высших растений содержат большое количество воды. В самом деле, вода составляет 80—90% от зеленой массы. Такое содержание воды соответствует роли этого вещества в жизни растения. Так, содержащиеся в клетках белки могут быть использованы в обменных процессах только в комбинации с водой. Значительные количества воды содержатся в вакуолях. Многочисленные органические и неорганические вещества находятся в растении в виде водных растворов. Именно вода в клетках определяет форму и упругость растений. Вместе с водой в организме транспортируются растворенные вещества. Вода дает возможность растению использовать уже накопленные углеводы и создавать новые.
Важной особенностью растений является превращение солнечной энергии в энергию химических связей. Главными исходными соединениями для синтеза сложных молекул служат вода и углекислый газ. Именно из них под действием солнечного света в зеленых клетках растений образуются сложные органические соединения, обладающие запасом химической энергии.
Первая стадия образования органических веществ из неорганических под действием света носит название фотосинтеза и в самом элементарном виде выражается схемой:
СO2 + H2O → Питательные вещества (углеводы) + O2
Понятие фотосинтез — это целая цепь реакций от поглощения исходных реагентов и световой энергий до образования органических веществ. Эта цепь длинная и сложная. Мы не стремимся описать полностью процесс фотосинтеза, дадим лишь упрощенное представление об основных этапах этого сложного процесса и внешних условиях, влияющих на ход реакций.
В процессе фотосинтеза можно выделить две последовательные серии реакций; первая серия быстрых реакций происходит на свету и зависит от интенсивности освещения; другая серия состоит из ряда более медленных реакций, идет с поглощением тепла и может происходить без света.
Прежде чем рассматривать реакции ассимиляции CO2, необходимо ознакомиться с частями клетки, принимающими участие в этих процессах.
Под микроскопом хорошо заметно, что зеленый пигмент в клетке не распределен равномерно, а сосредоточен в мелких телах, называемых хлоропластами. Они и определяют зеленую окраску листа. В свою очередь, цвет самих хлоропластов — это цвет зеленого пигмента хлорофилла. Хлорофилл кажется зеленым, потому что из потока падающего света он поглощает лучи в красной и синей зонах и отражает зеленые, которые уже и воспринимаются глазом. Кроме хлорофилла в хлоропластах содержатся желтые, оранжевые и бурые пигменты, называемые каротиноидами. Они играют вспомогательную роль в фотосинтезе, поглощая свет с другими длинами волн и передавая энергию хлорофиллу.
Молекула хлорофилла состоит из атомов водорода, углерода и азота, а в центре молекулы расположен атом магния. Упрощенная формула хлорофилла выглядит так:
Структура хлорофилла определяет его роль в процессе фотосинтеза — эффективно поглощать световую энергию и передавать ее другим молекулам. Хлорофилл поглощает единицу световой энергия, при этом один из его электронов, приобретая энергию отрыва, отделяется от молекулы и участвует в процессе восстановления никотинамидадениндинуклеотидфосфата (НАДФ+) с участием катионов водорода. НАДФ при этом переходит в свою восстановительную форму:
H+ + НАДФ+ +2e‾ → НАДФ • H
При такой реакции активизированные световой энергией электроны используются для присоединения иона водорода к переносчику водорода.
Восстановительный процесс, связанный с потерей хлорофиллом электрона, компенсируется окислением молекул воды:
2H2O → 4e‾ + 4H+ + O2
Образующийся в результате разложения кислород — побочный продукт фотосинтеза. Часть его растения используют для дыхания, а излишки выбрасывают в окружающую среду.
Важную роль в процессе фотосинтеза играет образование аденозинтрифосфата (АТФ). Энергия, поглощенная хлорофиллом и другими пигментами, концентрируется в молекулах хлорофилла. При этом отдельные активные электроны, последовательно переходя с одного потенциального уровня к другому, более высокому, получают большой запас энергии, которая используется для образования высокоэнергетических фосфатных связей в молекуле АТФ, образующейся из адезиндифосфата (АДФ) и неорганического фосфата (ФН)
АДФ + ФН + энергия хлорофилла → АТФ
АТФ служит источником энергии для химических реакций, с их помощью происходит освобождение клетки от отходов, он выполняет транспортные и многие другие функции. За счет запаса АТФ клетка может синтезировать питательные вещества, аккумулируя, таким образом, энергию и при необходимости использовать этот запас энергии для образования новых молекул АТФ.
В молекуле АТФ имеются две высокоэнергетические фосфатные связи. При их разрыве высвобождается большое количество энергии. Обычно от АТФ отрывается только одна из фосфатных групп, при этом образуется аденозиндифосфат (АДФ) и свободный неорганический фосфат ФН:
АТФ → АДФ + ФН + энергия
Итак, конечными продуктами световых реакций фотосинтеза являются НАДФ • H и АТФ. Эти соединения на следующей стадии используются соответственно как восстановитель и источник энергии для превращения CO2 в сахар. Этапы, из которых слагается это превращение, известны под общим названием темновых реакций фотосинтеза.
Ассимиляция CO2 происходит в процессе темновых реакций, где для образования молекул сахара с шестью молекулами углерода используется энергия АТФ и НАДФ • H, запасенная в ходе световых реакций. В реакциях, протекающих в хлоропласте, одновременно принимают участие многие молекулы. Часть этих молекул соединяется друг с другом, образуют шестиуглеродные сахара, в том числе молекулы глюкозы и фруктозы (состав обеих С6Н12O6), которые, соединяясь между собой, образуют сахарозу, целлюлозу и другие органические молекулы. Другая часть используется для синтеза аминокислот. И третья группа вовлекается в длинную цепь реакций, в результате которых из пяти трехуглеродных молекул образуются три пятиуглеродные. При этом замыкается цикл темновых реакций.
Суммируя уравнения всех промежуточных световых и темновых реакций фотосинтеза, можно получить уравнение, выражающее стехиометрию процесса:
CO2 + H2O → С6Н12O6 + 6O2.
Для того, чтобы происходил процесс фотосинтеза, клеткам зеленых растений необходим постоянный приток воды, углекислого газа, лучистой энергии, а также минеральных веществ, которые участвуют в промежуточных стадиях и играют роль катализаторов. При наличии этих исходных составляющих может нормально осуществляться фотосинтез и в дальнейшем из шестиуглеродных сахаров (глюкозы, фруктозы) будут образовываться ткани растений. Недостаток одной из составляющих не может быть компенсирован избытком других (скорость процесса определяется по самому слабому звену). Для того чтобы добиться успехов в культивировании растений, надо учитывать все факторы, влияющие на фотосинтез. Аквариумные растения не могут испытывать недостатка в воде. Вопросы, связанные с подачей углекислого газа в условиях аквариума, нами уже рассмотрены. Напомним, что основными источниками CO2 являются рыбы и другие водные животные; атмосферный углекислый газ; CO2, выделяемый растениями в ночное время; углекислый газ, поглощаемый из растворенных в воде гидрокарбонатов кальция и магния.
Необходимые растениям другие минеральные вещества содержатся в воде, поэтому вопрос об их использовании гидрофлорой напрямую связан с химическими свойствами и составом воды и будет рассмотрен в следующей главе.
ДОЛГО ЛИ ЖИВЕТ АКВАРИУМ?
Этот вопрос волнует, пожалуй, любого аквариумиста. Ответить однозначно, назвав определенное количество лет, невозможно, т. к. продолжительность существования аквариума определяется многими факторами, в том числе и гидрохимическими процессами, протекающими в воде и грунте.
Аквариум является микромоделью гидроэкосистемы. И, несмотря на множество различий между природным водоемом и аквариумом, основные законы развития у них общие, во многом сходны и протекающие процессы.
Приблизительно закон развития экосистемы можно сформулировать следующим образом; любая экосистема не может существовать вечно; пройдя через условно выделенные три стадии развития (становления, стабильного развития, деградации), переходит в другую экосистему.
Для наглядности рассмотрим эти процессы на примере условного озера. С зарождением жизни в нем постоянно происходит накопление донных осадков, связанных с гибелью животных, растений. Часть осадочных пород приносится впадающими реками и дождями, которые смывают различные вещества с суши. Озеро постепенно мелеет, концентрация биогенных элементов в нем возрастает. Население озера становится богаче, но не за счет образования новых видов, а за счет интенсивного роста числа доминирующих форм. Одновременно из флоры и фауны выпадают представители, которые наиболее требовательны к чистоте воды. Озеро еще сильнее мелеет, подводные растения прибрежной зоны (нимфеи, потамогетоны, роголистники и др.) разрастаются по направлению к центру, пока не покроют всю площадь. Затем начинается наступление надводных растений (тростник, камыш, рогоз и др.) и происходит постепенное заболачивание водоема. Таким образом, совершается переход из одной экосистемы (озера) в другую (болото). Конечно, явления в реальной жизни сильно отличаются от приведенной схемы. Например, на определенных стадиях процессы могут прерываться и протекать далее в обратном направлении. Однако в целом развитие экосистемы есть определенно направленный процесс, подчиняющийся законам природы. Аналогично происходит развитие и домашней экосистемы — аквариума.
В любую экосистему непрерывно поступают различные виды энергии: солнечная (в аквариуме — энергия ламп освещения), механическая, химическая и др. В ходе различных протекающих процессов энергия расходуется, трансформируется или аккумулируется (например, в виде энергии химических связей). Для нормального (сбалансированного) существования экосистемы необходимо, чтобы поступающая энергия равнялась потребляемой и уносимой. Такое равенство бывает лишь в идеальных системах. В реальной ситуации сбалансировать приток энергии с ее затратами практически невозможно.
Обычно аквариум считают изолированной системой. Однако это далеко не так. Аквариумист постоянно вмешивается в его жизнь; регулирует температуру, химический состав воды, газообмен, определяет по своему вкусу количественный и качественный состав обитателей.
Рассмотрим, как протекают указанные три периода развития экосистемы в аквариуме. Итак, первый этап — становление системы. В природном водоеме это длительный период. Аквариумисты стараются пройти его как можно быстрее. Практика показывает, что он длится от недели до двух месяцев. Этот период важен, так как в нем закладывается фундамент его дальнейшего существования. В это время в аквариум помещается грунт, заливается вода. Обычно наблюдается интенсивное развитие микроорганизмов, т. к., с одной стороны, свежая вода богата питательными веществами, а с другой — первые поселенцы не имеют врагов и конкурентов. Обычно, через 2—3 дня вода приобретает молочный цвет из-за активного размножения бактерий. Еще через несколько дней ее прозрачность восстанавливается. Для ускорения этих процессов обычно рекомендуется добавить немного воды и горсть грунта из благополучного аквариума со сложившимся режимом.
Через 5—6 дней после закладки грунта и заполнения аквариума водой сажают растения, а на следующий день запускают рыб (откладывать помещение в аквариум рыб не следует, т. к. растениям необходим источник углекислого газа).
Растения после небольшого шока, вызванного пересадкой, начинают расти. Приблизительно через неделю можно вносить в воду подкормку, содержащую биогенные микроэлементы. В первое время в аквариуме следует держать максимально возможное число рыб. Со временем, после накопления в грунте достаточного количества органических веществ, число рыб можно сократить. Этим мы поддерживаем энергетический баланс, т. к. все большее количество энергии будет выделяться в результате разложения накопившихся органических частиц. При избытке органических веществ в аквариуме возникает необходимость уменьшения их количества, для чего удаляют гниющие листья и мусор и регулярно подменивают воду.
Еще одним мощным источником поступления энергетических веществ в аквариум является корм для рыб, энергия которого, расходуется на строительство тела гидробионтов, а также является топливом, сжигаемым гидробионтами при движении. Внесенный в избыточном количестве корм приводит к дисбалансу экосистемы аквариума. Поэтому тем, кто собирается в декоративном аквариуме заниматься разведением рыб или подращивать мальков, мы этого делать не рекомендуем, т. к. в это время рыб следует интенсивно кормить.
Важным источником энергии, поступающей в аквариум, является освещение. Первое время при становлении аквариума (когда растения еще не разрослись) мощность ламп должна быть небольшой, т. к. часть энергии освещения, не поглощенная высшими растениями, способствует развитию водорослей. По мере разрастания растений количество ламп можно увеличить.
Предположим, что в аквариуме все благополучно: водоросли не появились, освещение выбрано правильно, растения прижились и активно развиваются, рыбы адаптировались к новым условиям. Такое состояние означает переход во второй этап развития экосистемы. Четкую временную границу между первым и вторым этапами провести невозможно.
В популярной литературе второй этап устойчивого состояния аквариума часто характеризуют термином биологическое равновесие. Однако этот термин неудачен. Несмотря на то, что аквариум в этот период довольно стабилен, энергетического равновесия (равновесия поступающей и выходящей энергии) нет: постоянно происходит накопление одних веществ и использование других. Более удачным, как нам кажется, является термин устойчивое состояние аквариума. Действия аквариумиста в этот период развития экосистемы сводятся к профилактическим мероприятиям: прореживанию разросшихся растений, удалению отмерших листьев, периодической чистке дна, подмене воды, поддержанию светового и температурного режимов. В этот период аквариум обладает способностью и к саморегуляции. Например, подмена до одной трети части воды проходит практически незаметно и без отрицательных последствий.
Постепенно в аквариуме, несмотря на все профилактические мероприятия, происходит накопление отходов жизнедеятельности растений, рыб и других животных. Те виды водных организмов, которые наиболее требовательны к чистоте воды, например, некоторые виды апоногетонов — популярных аквариумных растений — перестают расти, а виды, предпочитающие заиленные грунты, например нимфеи, интенсивно разрастаются, заполняя аквариум. В какой-то период развития со дна начинают подниматься пузырьки с характерным неприятным запахом. Это означает, что экосистема переходит в третий этап развития, т. е. начинает деградировать. Необходимо проводить обновление и основательную чистку аквариума, а иногда организовывать его заново.
Описанный процесс развития экологической системы в аквариуме можно проиллюстрировать графиком, представленным на рис. 16. Участки IA и IБ соответствуют первому этапу развития системы — становлению. IА — период заполнения аквариума, посадка растений, рыб и других обитателей. На этом этапе грунт еще беден органическими веществами, развитие растений протекает очень медленно (только за счет веществ, имевшихся в залитой воде).
Рис. 16. Периоды развития экосистемы аквариума.
На графике отмечено оптимальное содержание органических веществ в грунте для хорошего роста некоторых аквариумных растений: а — апоногетоны; б — криптокорины; в, г — длинностебельные растения.
С началом кормления рыб в грунте появляются органические остатки, подвергающиеся разложению (участок 1Б). В аквариуме накапливаются минеральные вещества (нитраты, фосфаты и др.), они служат питанием для растений. Окончанием этапа становления экосистемы можно считать нормальную скорость развития растений, предпочитающих свежую воду (апоногетоны), Стадии стабильного развития аквариума соответствует участок Н графика. Для этого этапа характерно умеренное содержание органики в грунте, в зависимости от которого достигаются оптимальные условия развития отдельных групп растений. Продолжительностью второго этапа можно управлять, периодически проводя подмену воды, чистку аквариума и удаляя из грунта накопившийся органический материал. Этим мероприятиям соответствуют резкие скачки на графике. Таким образом, можно поддерживать аквариум в том состоянии, которое необходимо аквариумисту.
Как часто необходимо подменивать воду и чистить грунт? Однозначно ответить на этот вопрос нельзя. Это зависит от плотности посадки рыб и растений, от наличия фильтрации, продувки, интенсивности освещения и многих других факторов. Здесь аквариумист должен сам определить периоды между профилактическими мероприятиями и их интенсивность для своего водоема.
При дальнейшем увеличении содержания органических веществ в грунте начинаются процессы гниения, повышается содержание аммиака и нитратов в воде вплоть до достижения предельно допустимых концентраций. Это означает начало третьего этапа развития — деградации. Содержать аквариум в таком состоянии нельзя.
Если подвести итоги сказанного, то следует еще раз подчеркнуть: для правильного содержания аквариума необходимо, чтобы потребности обитателей аквариума в корме и минеральных добавках удовлетворялись умеренно, и постоянно проводились работы, связанные с упорядочением системы. На практике это выражается в регулярной частичной подмене воды, чистке грунта и аквариумных фильтров, сборе отмерших частей растений и рыб, удалении избыточного корма. Если вы правильно и вдумчиво будете выполнять эти простейшие операции, аквариум будет вас радовать не один год. Максимальные сроки жизни аквариумов, как сообщают различные источники, составляют не один год, иногда до 15 лет. Однако наш опыт показывает, что и это не предел. Все зависит от знаний, умений и трудолюбия аквариумиста — можно достичь еще более длительного срока существования домашнего водоема.
Удобрения для растений
Мы уже говорили о том, что растениям для хорошего развития нужны макро- и микроэлементы. Макроэлементы (азот, фосфор, калий, натрий, сера, хлор, магний, кальций) практически всегда содержатся в аквариуме в достаточном количестве. В случае нехватки магния можно воспользоваться 10%-ным раствором MgSO, и добавлять его по 0,2—0,5 мл на 100 л воды в аквариум.
Микроэлементов в воде аквариума часто оказывается недостаточно, особенно для успешного pocта растений. При частичной подмене воды многие из этих элементов попадают в аквариум с водопроводной водой. Приведем результаты проведенного нами химического анализа состава водопроводной воды в г. Москве (Юго-Западный округ, сентябрь 1989 г.) в мг/л:
Бор — 0,02 Барий — 0,03 Алюминий — 0,08 Стронций — 0,21 Медь — 0,001
Марганец — 0,04 Железо, никель, олово, кобальт — все 0,0
Однако многие из микроэлементов расходуются в первые 1—3 дня, поэтому возникает необходимость их внесения в аквариум.
Для успешного роста растений, прежде всего, необходимы соединения железа. Например, в природных биотопах обитания криптокорин содержание этого элемента составляет до 0,2—0,5 мг/л. Железо надо вносить в аквариум в виде двухвалентных соединений, т. к. соли железа (III) мгновенно гидролизуются и выпадают в осадок в виде гидроксидов. Недостатком солей железа (Н), например, сульфата FeSO4 или железного купороса FeSO4 • 7Н2О, является их легкая окисляемость в воде до соединений железа (III) (затем они также выпадают в осадок). Лучшие удобрения содержат железо в виде комплексных соединений железа, особенно хелатного типа. К таким соединениям относятся комплексы железа с этилендиаминтетрауксусной кислотой и некоторыми другими комплексообразующим и агентами, которые еще более эффективны.
При внесении железных удобрений надо помнить, что для создания концентрации 0,1 мг/л надо в 100-литровом аквариуме растворить 0,05 г железного купороса FeSO4 • 7H2O. Этого вполне достаточно для большинства растений. Такую дозу железосодержащих соединений надо вносить не реже двух раз в неделю (при достаточно большом количестве растений в аквариуме).
Для внесения других микроэлементов обычно готовят раствор, содержащий их соединения. В табл. 28 приведены важнейшие микроэлементы и соединения, которые могут быть использованы в комплексном удобрении.
Таблица 28 Соединения, которые могут быть использованы в качестве микроудобрений для растений

Микроэлемент
Соединения




Бор
Н3ВО3, Na2B4O7 • 10Н20 (бура)

Марганец
MnSO 4 • 7Н20, MgCl2 • 4Н2О, Mn(NO3)2 • 6Н2О

Никель
NiSO4 • 7Н2О, NiCl2, Ni(NO3)2 • 6Н2О

Кобальт
CoSO4 • 7Н2О, СоCl2 • 6Н2О, Со(МО3)2 • 6Н2О

Медь
CuSO4 • 5H2O, CuCl2 • 2H2O, Cu(NO3)2 • 3H2O

Цинк
ZnSO4 • 7Н2О, ZnCl2, Zn(NO3)2 • 6H2O

Литий
LiCl, Li2SO4

Алюминий
Al2(SO4)3, AlCl3, KAl(SO4)2 • 12H2O

Олово
SnCl2, SnSO4

Титан
K2TiO3

Иод
KJ, NaJ

Бром
KBr, NaBr

Ванадий
NH4VO3, KVO3

Молибден
Na2MoO4, (NH4)2MoO4

Для приготовления удобрения берут 500—600 мг соединений бора, 300—400 мг — марганца, по 50 мг — соединений титана, кобальта, никеля, меди, цинка, алюминия, молибдена, по 25 мг — соединений ванадия, олова, лития, брома и иода. Эти вещества растворяют в 1 л воды, получая концентрированное удобрение.
Есть сведения, что для минерального питания растений нужны также кадмий, хром, свинец, мышьяк, рубидий. Возможно добавление их соединений в концентрированное удобрение в микроколичествах.
Расход микроэлементов растениями различен. В табл. 29 приведены результаты анализа воды в аквариуме сразу после внесения микроэлементов, через 12 часов и 3,5 суток. Контрольный аквариум имел объем 375 л (50 х 50 х 150). В нем росли эхинодорусы, апоногетоны, длинностебельные растения (высокая плотность посадки), освещение — люминисцентные лампы (200 Вт).
Большинство аквариумистов не имеет возможности анализировать воду на содержание микроэлементов, т. к. это можно сделать лишь с использованием современных инструментальных методов анализа, доступных только специальным лабораториям. Поэтому комплексное удобрение с микроэлементами вносится регулярно (обычно 1 раз в неделю) в количестве 2 мл на 100 л воды в аквариуме. Такая методика дает хорошие результаты при выращивании аквариумных растений. Если образуется избыток какого-либо элемента, то он удаляется при подмене воды.
Таблица 29 Изменение концентрации микроэлементов в аквариумной воде
Элемент
Сразу после внесения удобрения
Через 12 часов
Через 3,5 суток

Бор
Марганец
Никель
Кобальт
Медь
Алюминий
Стронций
Железо
Олово
0,0600
0,0056
0,0440
0,0150
0,0054
0,1600
0,4200
0,1230
0,0260
0,0540
0,0015
0,0015
0,0350
0,0000
0,0900
0,3800
0,1010
0,0230
0,042
0.001
0,032
0.010
0,000
0,080
0,360
0,000
0,020

Следует отметить, что приготовление удобрений для аквариумных растений — сложное занятие: необходимо выдержать определенный порядок растворения отдельных компонентов, внести добавки веществ, которые способствуют хорошему усвоению микроэлементов растениями. Поэтому мы рекомендуем аквариумистам, увлекающимся выращиванием водных растений, использовать специальные удобрения. Например, нами разработаны препараты серии УАР: УАР-31 (трехкомпонентное), УАР-21 (двухкомпонентное), УАР-100 (однокомпонентное).
При использовании удобрений, никаких других добавок для роста растений в воду вносить не нужно, Рекомендации по внесению витаминов в аквариумную воду неоправданны, т. к. растения сами синтезируют витамины из неорганических веществ. Нами не обнаружено положительное влияние витаминов на рост аквариумных растений.
ПОДГОТОВКА ВОДЫ И ПОДДЕРЖАНИЕ ЕЕ ХИМИЧЕСКОГО СОСТАВА
Обычно для заполнения аквариума используют водопроводную воду. Конечно, перед этим аквариумист должен узнать ее гидрохимические характеристики и, в первую очередь, жесткость и кислотность. Знание этих параметров определяет выбор рыб и растений, а также тип аквариума (например, если это биотопный водоем, то помогает выбрать подходящий биотоп). Хлорированная вода (такой она является в большинстве крупных населенных пунктов) должна отстояться в течение нескольких дней (не менее 5 — 6 суток).
Во многих случаях аквариумисту приходится изменять химический состав воды: увеличивать или уменьшать жесткость, соленость, кислотность, вносить раз — личные добавки, проводить частичную подмену воды. О том, как это надо делать, мы расскажем в данной главе.
Умягчение воды
Как мы уже неоднократно отмечали, при содержании и разведении некоторых водных организмов используют мягкую воду (более мягкую, чем вода в данной местности). Химические способы умягчения воды, основанные на внесении в воду различных реактивов, не подходят для аквариумистов, т. к. в результате удаления одних веществ (солей кальция и магния) в воде появляются другие.
Во многих руководствах по аквариумистике предлагается в качестве источника мягкой воды использовать дождевую воду. Действительно, эта вода достаточно мягкая, имеющая невысокую общую соленость. В табл. 26 приведен состав, жесткость и рН атмосферных осадков, выпавших вблизи некоторых городов России. В большинстве случаев жесткость такой воды составляет менее 0,5 dGH.
Однако дождевую воду для аквариумных целей надо использовать очень осторожно: вблизи больших городов и крупных предприятий она бывает сильно загрязнена различными вредными для рыб веществами (диоксид серы, оксиды азота, аммиак, органические соединения, кислоты и др.). Лучше всего ее пропустить через активированный уголь (например, через фильтр Родничок).
Таблица 26 Состав и свойства дождевой воды, собранной вблизи некоторых городов России

Город
Концентрация, мг/л
Общая жесткость dGH

рН


Ca2+
Mg2+
Na++K+



Москва
2,0
0,3
2,3
0,35
5,7

С-Петербург
0,9
0,2
1,7
0,17
5,3

Екатеринбург
1,3
0,3
2,3
0,25
5,6

Кисловодск
1,5
0,4
1,4
0,30
5,9

Казань
1,4
0,4
1,9
0,29
5,6

Простой способ снижения жесткости воды — кипячение. Но надо помнить, что кипячение снижает лишь карбонатную жесткость. При этом, чем дольше будет кипятиться вода, тем больше снизится карбонатная жесткость (dKH). Такая вода может иметь достаточно большую жесткость (за счет постоянной жесткости dNKH), но нейтральную или слабокислую реакцию, т. к. из нее удалены гидрокарбонаты, сообщающие воде щелочные свойства. Кипячение, однако, не решает проблемы существенного умягчения воды.
Эффективный способ умягчения воды — вымораживание. Вымораживание можно проводить в эмалированной или пластмассовой посуде в морозильнике соответствующего объема или зимой. После того как замерзла примерно половина воды, пробивают ледяную корку, сливают остатки жидкости (она стала содержать больше солей), а лед растапливают, получая достаточно мягкую воду. В зависимости от жесткости исходной воды, после вымораживания значение dGH в ней обычно составляет 1—3.
Одним из лучших способов получения мягкой воды является дистилляция. В химических лабораториях используются электрические дистилляторы (например, ДЭ-4), имеющие высокую производительность.
Дистилляция основана на испарении воды с последующей конденсацией ее паров на холодном тело. На рис. 22 показана лабораторная установка для дистилляции (перегонки) воды, которую может собрать и аквариумист. В колбу с боковым отводом наливается вода и помещается несколько кусочков битого фарфора (для более равномерного кипения). Для лучшей очистки молено добавить по несколько капель растворов перманганата калия (до слаборозового цвета) и серной кислоты. Колба закрывается пробкой с термометром. Через водяной холодильник, где происходит конденсация паров, пропускается проточная холодная вода. Дистиллированная вода собирается в сборной емкости. Колба с исходной водой нагревается на газовой горелке или электроплитке. Аквариумист, использующий такие дистилляторы, может получать небольшие количества дистиллированной воды.
Значительно более производительным является метод обессоливания воды с применением ионообменных смол (ионитов). Этот метод может быть реализован аквариумистами в домашних условиях, поэтому расскажем о нем подробнее.
Иониты — вещества, которые содержат подвижные ионы (катионы или анионы), которые могут обмениваться с катионами или анионами электролита. Рассмотрим механизм работы катионита (он обменивает катионы). Его формулу можно представить в виде RH, где R — сложная органическая частица. При прохождении катионов металлов через катионит происходит реакция обмена, например, в случае ионов натрия
RH + Na+ → RNa + H+
Если через катионит пропустить смесь хлоридов (NaCl, KCl, CаCl2, MgCl2 и т. д.), то на выходе мы получим раствор HCl. После пропускания через катионит определенного количества растворов, его надо регенерировать: пропустить раствор кислоты. При этом он принимает исходную форму:
Аниониты (например, в ОН — форме ROH) аналогично обменивают анионы:
ROH + Cl− → RCl + OH−
Регенерацию анионитов проводят раствором щелочи (NaOH, KOH) или соды, в которых имеются ионы ОН−, образовавшиеся в результате гидролиза. При регенерации анионит восстанавливает исходную форму:
RCl + OH− → ROH + Cl−
Рис. 22. Установка для перегонки воды: 1 — колба с исходной водой, 2 — холодильник, 3 — аллонж, 4 — сосуд для сбора дистиллята.
Если через анионит пропускать смесь кислот, то на выходе мы будем получать воду, т. к.
H+ + OH− → H2O
Таким образом, пропуская воду с растворенными солями последовательно через катионит и анионит, мы получим чистую воду. Для аквариумистов мы рекомендуем использовать катиониты КУ-2, КУ-23 и анионит АВ-17.
Прибор для опреснения воды — ионообменную колонку — можно изготовить из стеклянной или пластмассовой трубки диаметром 3—6 см и длиной 40—60 см. Понадобятся две тонкие трубки: для катионита и анионита. С помощью резиновых или пластмассовых трубочек и переходников собирается система, изображенная на рис. 23.
Иониты перед заполнением колонок должны быть подготовлены. Вначале их заливают на 10—12 часов для набухания.
Катионит помещают в колонку и пропускают через нее 5%-ный раствор серной или соляной кислот из расчета 400 мл раствора на 100 г сухого катионита. Затем пропускают через катионит дистиллированную воду (объем в 2 раза больше, чем объем раствора кислоты).
Рис. 23. Схема установки для опреснения воды при помощи ионообменных смол:
1 — колонка с катионитом, 2 — колонка с анионитом, 3 — сосуд с опресненной водой.
Анионит после набухания помещают в другую колонку, пропускают 5%-ный раствор щелочи (гидроксид натрия NaOH или гидроксид калия KOH), из расчета 300 мл раствора NaOH (или 400 мл раствора КОН) на 100 г сухого анионита, и промывают дистиллированной водой (объем в 2—3 больше, чем объем щелочи). После этого систему собирают и готовят к работе.
Какое количество дистиллированной воды можно получить в такой системе без регенерации? Это определяется количеством ионитов и их обменной емкостью. Так, если на заполнение колонок затрачено по 100 г катионита КУ-2 (КУ-23) и анионита АВ-17 (в расчете на сухие иониты), то с помощью такой установки можно обессолить до 100 л воды с жесткостью около 10 ˚dGH. Если вода более мягкая, то объем получаемой без регенерации ионитов воды пропорционально возрастает, если жесткость больше — объем уменьшается.
После отработки колонки отключаются от установки, и проводится регенерация ионитов (те же операции, что и при подготовке к работе, но без набухания). В нерабочем состоянии колонки надо хранить заполненными дистиллированной водой.
Итак, мы рассмотрели основные методы получения обессоленной, или дистиллированной воды. В табл. 97 показано, в каких соотношениях надо брать жесткую дистиллированную воду, чтобы получить определенное значение dGH.
Таблица 27 Объем дистиллированной воды в мл, которую надо добавить к 1 л водопроводной для получения воды с заданной жесткостью
Жесткость водопроводной воды
Требуемая жесткость, ˚dGH


1
4
6
8

6
2000
500



8
3000
1000
330


10
4000
1500
660
250

12
5000
2000
1000
500

14
6000
2500
1400
750

16
7000
3000
1800
1000

Повышение жесткости и солености воды
Жесткость воды можно повысить, растворяя в ней различные вещества. Проще всего увеличить постоянную (некарбонатную) жесткость. Для этого мы рекомендуем приготовить 10%-ный раствор хлорида кальция (этот раствор продается в аптеках) и 10%-ный раствор сульфата магния (MgSO4 • 7Н2О — основной компонент горькой соли, также продающейся в аптеках). Для повышения жесткости на 1 dGH надо на 100 л воды аквариума внести 18,3 мл 10%-ного раствора CaCl2 или 19,7 мл 10%-ного раствора MgSO4. Мы рекомендуем добавлять эти растворы примерно в одинаковых количествах для поддержания необходимого рыбам и растениям соотношения ионов.
Несколько сложнее повысить карбонатную жесткость воды. В некоторых руководствах предлагается положить в воду карбонатные породы (мел, мрамор, доломит и др.). Однако, надо помнить, что растворение этих пород в воде происходит лишь в присутствии углекислого газа:
CaCO3 + CO2 + Н2О → Са(НСО3)2
Источником СО2 могут служить рыбы, газированная вода, специальный прибор, о котором будет рассказано ниже в этой главе. При использовании этого способа повышения карбонатной жесткости надо помнить, что для увеличения dKH на Г в 100 мл воды должно раствориться 1,8 г карбоната кальция СаСО3 или 1,5 г карбоната магния MgCO3. Опять отметим, что лучше брать обе соли в равных количествах.
Для содержания некоторых рыб (живородящие, тетрадоны и др.) и некоторых водных животных требуется вода не только жесткая, но и имеющая достаточно высокую общую соленость. Обычная рекомендация, часто встречающаяся в книгах по аквариумистике, — добавлять в воду поваренную соль (NaCl). Этот способ нам представляется не самым удачным. Во-первых, увеличивая концентрацию ионов Na+ и Cl−, мы нарушаем общее соотношение ионов в воде. Во-вторых, избыток ионов натрия неблагоприятно сказывается на развитии многих аквариумных растений. Поэтому мы рекомендуем аквариумистам для повышения общей солености воды использовать смеси солей (сульфатов и хлоридов) натрия и калия с преобладанием последних. Можно использовать смеси: NaCl + K2SO4 или Na2SO4 + KCl. Для расчета требуемого количества каждой соли надо знать: чтобы повысить соленость 100 л воды на 1 г/л (одно промилле) в ней надо растворить 100 г смеси указанных солей.
Изменение кислотности воды
Аквариумист часто сталкивается с проблемой изменения рН в аквариумной воде. Однако, как правило, это свойство является вторичным, во многом зависящим от жесткости: обычно более жесткая вода — щелочная, более мягкая — кислая. Существуют способы химического воздействия на воду, позволяющие немного увеличить или уменьшить рН. Следует помнить, что эти изменения часто непродолжительны (через некоторое время система возвращается в исходное состояние), поэтому необходим постоянный контроль рН.
Увеличить кислотность (уменьшить рН) можно, вводя в аквариумную воду расгворы кислот: фосфорной, уксусной, серной, соляной. Добавлять кислоту к воде надо очень осторожно (по каплям). Лучше взять 1—2 л воды из аквариума и, добавив несколько капель раствора кислоты, вылить воду обратно. Если будет необходимость, то операцию повторяют.
Хороший способ подкисления воды — добавление соли, которая имеет кислую реакцию из-за процесса гидролиза. Такими солями являются дигидрофосфат натрия NaH2PO4 и дигидрофосфат калия KН2РО4, Воду со слабокислой реакцией (рН 5,3—6,5 в зависимости от жесткости) можно получить, растворив 20—30 г одной из названных солей в 100 л аквариумной воды.
Достаточно мягкую (обессоленную, дистиллированную) воду можно подкислить отваром торфа. Для этого 10—20 г верхового торфа кипятят в 1 л дистиллированной воды в течение получаса. Охлажденный отвар отфильтровывают и хранят в холодильнике. Отвар добавляют в воду до приобретения ею золотистой окраски.
Хорошим способом понизить рН и поддерживать его на таком уровне является использование фильтров с наполнителем из торфа. Можно применять комбинированный метод: добавление веществ с кислой реакцией и установка торфяного фильтра.
Для подщелачивания воды (увеличения рН) лучше всего использовать не щелочи, а вещества со щелочной реакцией, например, гидрофосфат натрия Na2HPO4, гидрофосфат калия K2НРО4, гидрокарбонат натрия (питьевая сода) NaHCO3. Для получения воды со слабощелочной реакцией в 100-литровом аквариуме надо растворить 3—8 г одной из названных солей (или смесь их).
Насыщение воды углекислым газом
При содержании оранжерей и палудариумов с аквариумными растениями, при выращивании растений в аквариумах без рыб, при необходимости повышения карбонатной жесткости воды и увеличения питания для растений применяют насыщение воды углекислым газом. При соблюдении некоторых предосторожностей можно растворять СО2 в воде аквариумов с большой плотностью растений и с малочисленным рыбным населением, но только в дневное время.
Самый удобный способ — насыщение углекислым газом из специальных баллонов. Такие системы выпускают зарубежные фирмы, например, фирма Dupla (Германия). Можно приспособить для этой цели сифоны для получения газированной воды, однако это не очень производительный и достаточно дорогой способ.
Достаточно простой прибор для получения углекислого газа можно изготовить из U-образной трубки, как показано на рис. 24. В одном из колен трубки делают перегородку из пластмассы (например, шарик из полиэтиленовой пленки), на которую кладут несколько кусочков мела, мрамора или другой породы, содержащей известняк. Через воронку, вставленную в другое колено, заливают раствор (10—15%) соляной кислоты в таком количестве, чтобы он покрыл известняк. Начинается реакция, выделяется углекислый газ. Если перекрыть кран на газоотводной трубке, то выделившийся газ вытеснит кислоту из колена с известняком (кислота уйдет в другое колено и воронку), реакция прекратится. Таким образом, можно регулировать поток углекислого газа. Можно, например, открыть газ не полностью: кислота покроет не весь известняк, и газ будет идти, однако менее интенсивно, чем при полностью открытом кране.
Можно предложить много модификаций такого прибора, используя пробирку или колбу с боковым отводом и даже молочную бутылку, снабженную пробкой с двумя отверстиями: для воронки и газоотводной трубки.
Для того, чтобы кислота не попала в аквариум, желательно углекислый газ из прибора пропускать в предохранительную емкость, изготовленную из пробирки или специальную химическую склянку (рис. 25).
При отсутствии специальных приборов для получения углекислого газа, в оранжереях и палудариумах можно устанавливать баночки, в которые наливается немного разбавленного раствора соляной кислоты и кладется кусочек известняка. Однако с такими приспособлениями надо обращаться очень осторожно: если кислота прольется в воду, то это может вызвать гибель многих растений.
Рис 24. Прибор для получения углекислого газа:
1 — U-образная трубка,
2 — воронка,
3 — прокладка из пластмассы,
4 — раствор соляной кислоты,
5 — карбонат кальция (мел, известняк),
6 — газоотводная трубка с краном

Рис 25. Приспособления для предотвращения попадания кислоты в аквариум
Удаление хлора из воды
Как мы уже говорили, водопроводную воду часто хлорируют для обеззараживания. Хлор — токсичное для рыб вещество. При использовании хлорированной воды для заполнения аквариумов необходимо освободить ее от растворенного ядовитого газа.
Простейший способ — выстаивание воды в течение 5—6 суток. Процесс ускоряется (приблизительно в 2—3 раза), если в емкость с водой поместить распылители от воздушных компрессоров.
Хлор удаляется из воды при кипячении. Однако при этом уменьшается также карбонатная жесткость, что не всегда желательно.
При дехлорировании небольших количеств воды и необходимости быстрой ее подготовки применяют химический метод. Для химической обработки хлорированной воды чаще всего в ней растворяют тиосульфат (гипосульфит) натрия Na2S2O3 в количестве 10 г на 100 л. Тиосульфат-ионы превращают хлор в малотоксичные хлорид-ионы:
4Cl2 + S2O32‾ + 5Н2O = 8Cl‾ + 2SO42‾ + 10Н+
Хорош для удаления хлора из водопроводной воды адсорбционный метод, основанный на пропускании ее через слой активированного угля. Для этого, например, хорошо использовать бытовой фильтр Родничок, однако надо быть уверенным в том, что наполнитель (активированный уголь) еще не полностью отработан. В такую воду можно сразу помещать аквариумных рыб.
Подмена воды в аквариуме
Подмена воды в аквариуме — очень важная процедура, поддерживающая аквариум в устойчивом состоянии. В процессе подмены воды происходит удаление из нее избытка вредных веществ: нитратов и других азотсодержащих соединений, гуминовых кислот и т. д. Кроме того, со свежей водой в аквариум вносятся некоторые необходимые вещества и, прежде всего, — микроэлементы. Подмена воды, совмещенная с чисткой грунта от избытка органических остатков, позволяет не допустить переход аквариумной системы в состояние деградации (см. рис. 17).
Подмену воды проводят один раз в неделю (или 10 дней). При этом заменяется 1/4 - 1/3 часть объема аквариума. Воду, вновь заливаемую в аквариум, желательно предварительно отстоять в эмалированной или стеклянной посуде в течение суток или нагреть ее до 60 С и после остывания налить в аквариум.
Если аквариум достаточно большого размера (более 100 л), то, как показывает опыт, можно заливать до 20% воды непосредственно из водопровода. При этом ее температура должна быть 20—25 С, т. е. надо смешивать горячую и холодную воду. Как уже отмечалось в первой части, хлор, содержащийся в водопроводной воде, в течение нескольких секунд реагирует с растворенными органическими веществами и нейтрализуется. Периодическую подмену воды обычно совмещают с работами по чистке аквариума: укорачивают и прореживают растения, удаляют старые листья, чистя стекла, фильтры, грунт. Все это также способствует поддержанию аквариума в хорошем состоянии
Полная замена воды в аквариуме проводится обычно редко: только при неблагоприятном состоянии, развитии водорослей, массовой гибели рыб и т. д., а также в очень старом аквариуме, когда он начал деградировать.

HYPER13PAGE HYPER15


90